SUBROUTINE DGESVX_F95( A, B, X, AF, IPIV, FACT, TRANS, EQUED, R, C, FERR, BERR, RCOND, & RPVGRW, INFO ) ! ! -- LAPACK95 interface driver routine (version 3.0) -- ! UNI-C, Denmark; Univ. of Tennessee, USA; NAG Ltd., UK ! September, 2000 ! ! .. USE STATEMENTS .. USE LA_PRECISION, ONLY: WP => DP USE LA_AUXMOD, ONLY: LSAME, ERINFO USE F77_LAPACK, ONLY: GESVX_F77 => LA_GESVX ! .. IMPLICIT STATEMENT .. IMPLICIT NONE ! .. SCALAR ARGUMENTS .. CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS, FACT CHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: EQUED INTEGER, INTENT(OUT), OPTIONAL :: INFO REAL(WP), INTENT(OUT), OPTIONAL :: RCOND, RPVGRW ! .. ARRAY ARGUMENTS .. REAL(WP), INTENT(INOUT) :: A(:,:), B(:,:) REAL(WP), INTENT(OUT) :: X(:,:) INTEGER, INTENT(INOUT), OPTIONAL, TARGET :: IPIV(:) REAL(WP), INTENT(INOUT), OPTIONAL, TARGET :: C(:), R(:) REAL(WP), INTENT(INOUT), OPTIONAL, TARGET :: AF(:,:) REAL(WP), INTENT(OUT), OPTIONAL, TARGET :: FERR(:), BERR(:) !---------------------------------------------------------------------- ! ! Purpose ! ======= ! ! LA_GESVX computes the solution to a real or complex linear system of ! equations of the form A*X = B, A^T*X = B or A^H*X = B, where A is a ! square matrix and X and B are rectangular matrices or vectors. ! LA_GESVX can also optionally equilibrate the system if A is poorly ! scaled, estimate the condition number of (the equilibrated) A, return ! the pivot growth factor, and compute error bounds. ! ! ========= ! ! SUBROUTINE LA_GESVX ( A, B, X, AF=af, IPIV=ipiv, FACT=fact, & ! TRANS=trans, EQUED=equed, R=r, C=c, FERR=ferr, & ! BERR=berr, RCOND=rcond, RPVGRW=rpvgrw, & ! INFO=info ) ! (), INTENT(INOUT) :: A(:,:), ! (), INTENT(OUT) :: ! (), INTENT(INOUT), OPTIONAL :: AF(:,:) ! INTEGER, INTENT(INOUT), OPTIONAL :: IPIV(:) ! CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: FACT, & ! TRANS ! CHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: EQUED ! REAL(), INTENT(INOUT), OPTIONAL :: R(:), C(:) ! REAL(), INTENT(OUT), OPTIONAL :: , RCOND, RPVGRW ! INTEGER, INTENT(OUT), OPTIONAL :: INFO ! where ! ::= REAL | COMPLEX ! ::= KIND(1.0) | KIND(1.0D0) ! ::= B(:,:) | B(:) ! ::= X(:,:) | X(:) ! ::= FERR(:), BERR(:) | FERR, BERR ! ! Arguments ! ========= ! ! A (input/output) REAL or COMPLEX square array, shape (:,:). ! On entry, the matrix A or its equilibration: ! If FACT = 'F' and EQUED /= 'N' then A has been equilibrated ! by the scaling factors in R and/or C during a previous call ! to LA_GESVX. ! On exit, if FACT = 'E', then the equilibrated version of A ! is stored in A; otherwise, A is unchanged. ! B (input/output) REAL or COMPLEX array, shape (:,:) with ! size(B,1) = size(A,1) or shape (:) with size(B) = size(A,1). ! On entry, the matrix B. ! On exit, the scaled version of B if the system has been ! equilibrated; otherwise, B is unchanged. ! X (output) REAL or COMPLEX array, shape (:,:) with size(X,1) = ! size(A,1) and size(X,2) = size(B,2), or shape (:) with ! size(X) = size(A,1). ! The solution matrix X . ! AF Optional (input or output) REAL or COMPLEX square array, ! shape (:,:) with the same size as A. ! If FACT = 'F' then AF is an input argument that contains the ! factors L and U of (the equilibrated) A returned by a ! previous call to LA_GESVX. ! If FACT /= 'F' then AF is an output argument that contains ! the factors L and U of (the equilibrated) A. ! IPIV Optional (input or output) INTEGER array, shape (:) with ! size(IPIV) = size(A,1). ! If FACT = 'F' then IPIV is an input argument that contains ! the pivot indices from the factorization of (the ! equilibrated) A, returned by a previous call to LA_GESVX. ! If FACT /= 'F' then IPIV is an output argument that contains ! the pivot indices from the factorization of (the ! equilibrated) A. ! FACT Optional (input) CHARACTER(LEN=1). ! Specifies whether the factored form of the matrix A is ! supplied on entry, and, if not, whether the matrix A should ! be equilibrated before it is factored. ! = 'N': The matrix A will be copied to AF and factored (no ! equilibration). ! = 'E': The matrix A will be equilibrated, then copied to AF ! and factored. ! = 'F': AF and IPIV contain the factored form of (the ! equilibrated) A. ! Default value: 'N'. ! TRANS Optional (input) CHARACTER(LEN=1). ! Specifies the form of the system of equations: ! = 'N': A*X = B (No transpose) ! = 'T': A^T*X = B (Transpose) ! = 'C': A^H*X = B (Conjugate transpose) ! EQUED Optional (input or output) CHARACTER(LEN=1). ! Specifies the form of equilibration that was done. ! EQUED is an input argument if FACT = 'F', otherwise it is an ! output argument: ! = 'N': No equilibration (always true if FACT = 'N'). ! = 'R': Row equilibration, i.e., A has been premultiplied by ! diag(R). ! = 'C': Column equilibration, i.e., A has been postmultiplied ! by diag(C). ! = 'B': Both row and column equilibration. ! Default value: 'N'. ! R Optional (input or output) REAL array, shape (:) with size(R) ! = size(A,1). The row scale factors for A. ! R is an input argument if FACT = 'F' and EQUED = 'R' or 'B'. ! R is an output argument if FACT = 'E' and EQUED = 'R' or 'B'. ! C Optional (input or output) REAL array, shape (:) with size(C) ! = size(A,1). The column scale factors for A. ! C is an input argument if FACT = 'F' and EQUED = 'C' or 'B'. ! C is an output argument if FACT = 'E' and EQUED = 'C' or 'B'. ! FERR Optional (output) REAL array of shape (:), with size(FERR) = ! size(X,2), or REAL scalar. ! The estimated forward error bound for each solution vector ! X(j) (the j-th column of the solution matrix X). If XTRUE is ! the true solution corresponding to X(j) , FERR(j) is an ! estimated upper bound for the magnitude of the largest ! element in (X(j)-XTRUE) divided by the magnitude of the ! largest element in X(j). The estimate is as reliable as the ! estimate for RCOND and is almost always a slight ! overestimate of the true error. ! BERR Optional (output) REAL array of shape (:), with size(BERR) = ! size(X,2), or REAL scalar. ! The componentwise relative backward error of each solution ! vector X(j) (i.e., the smallest relative change in any ! element of A or B that makes X(j) an exact solution). ! RCOND Optional (output) REAL. ! The estimate of the reciprocal condition number of (the ! equilibrated) A. If RCOND is less than the machine precision, ! the matrix is singular to working precision. This condition ! is indicated by a return code of INFO > 0. ! RPVGRW Optional (output) REAL. ! The reciprocal pivot growth factor ||A||inf = ||U||inf. If ! RPVGRW is much less than 1, then the stability of the LU ! factorization of the (equilibrated) matrix A could be poor. ! This also means that the solution X , condition estimator ! RCOND, and forward error bound FERR could be unreliable. If ! the factorization fails with 0 < INFO <= size(A,1), then ! RPVGRW contains the reciprocal pivot growth factor for the ! leading INFO columns of A. ! INFO Optional (output) INTEGER ! = 0: successful exit. ! < 0: if INFO = -i, the i-th argument had an illegal value. ! > 0: if INFO = i, and i is ! <= n: U(i,i) = 0. The factorization has been completed, ! but the factor U is singular, so the solution could ! not be computed. ! = n+1: U is nonsingular, but RCOND is less than machine ! precision, so the matrix is singular to working ! precision. Nevertheless, the solution and error ! bounds are computed because the computed solution ! can be more accurate than the value of RCOND would ! suggest. ! If INFO is not present and an error occurs, then the program ! is terminated with an error message. !---------------------------------------------------------------------- ! .. PARAMETERS .. CHARACTER(LEN=8), PARAMETER :: SRNAME = 'LA_GESVX' ! .. LOCAL SCALARS .. CHARACTER(LEN=1) :: LFACT, LTRANS, LEQUED INTEGER :: ISTAT, ISTAT1, LD, LINFO, N, NRHS, S1AF, S2AF, SBERR, SC, SFERR, SIPIV, SR REAL(WP) :: LRCOND, MVR, MVC ! .. LOCAL POINTERS .. INTEGER, POINTER :: IWORK(:), LPIV(:) REAL(WP), POINTER :: LC(:), LR(:), LFERR(:), LBERR(:) REAL(WP), POINTER :: WORK(:), LAF(:, :) ! .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, PRESENT, SIZE, MINVAL, TINY ! .. EXECUTABLE STATEMENTS .. LINFO = 0; ISTAT = 0; N = SIZE(A, 1); NRHS = SIZE(B, 2) LD = MAX(1,N) IF( PRESENT(RCOND) ) RCOND = 1.0_WP IF( PRESENT(RPVGRW) ) RPVGRW = 1.0_WP IF( PRESENT(FACT) )THEN LFACT = FACT ELSE LFACT='N' END IF IF( PRESENT(EQUED) .AND. LSAME(LFACT,'F') )THEN LEQUED = EQUED ELSE LEQUED='N' END IF IF( PRESENT(IPIV) )THEN SIPIV = SIZE(IPIV) ELSE SIPIV = N END IF IF( PRESENT(AF) )THEN S1AF = SIZE(AF,1); S2AF = SIZE(AF,2) ELSE S1AF = N; S2AF = N END IF IF( ( PRESENT(C) ) )THEN SC = SIZE(C) ELSE SC = N END IF IF( ( PRESENT(C) .AND. LSAME(LFACT,'F') ) .AND. & & ( LSAME(LEQUED,'C') .OR. LSAME(LEQUED,'B') ) )THEN MVC = MINVAL(C) ELSE MVC = TINY(1.0_WP) END IF IF( PRESENT(R) )THEN SR = SIZE(R) ELSE SR = N END IF IF( ( PRESENT(R) .AND. LSAME(LFACT,'F') ) .AND. & & ( LSAME(LEQUED,'R') .OR. LSAME(LEQUED,'B') ) )THEN MVR = MINVAL(R) ELSE MVR = TINY(1.0_WP) END IF IF( PRESENT(FERR) )THEN SFERR = SIZE(FERR) ELSE SFERR = NRHS END IF IF( PRESENT(BERR) )THEN SBERR = SIZE(BERR) ELSE SBERR = NRHS END IF IF(PRESENT(TRANS))THEN LTRANS = TRANS ELSE LTRANS='N' END IF ! .. TEST THE ARGUMENTS IF( SIZE(A, 2) /= N .OR. N < 0 )THEN LINFO = -1 ELSE IF( SIZE(B, 1) /= N .OR. NRHS < 0 )THEN LINFO = -2 ELSE IF( SIZE(X, 1) /= N .OR. SIZE(X, 2) /= NRHS )THEN LINFO = -3 ELSE IF( S1AF /= N .OR. S2AF /= N ) THEN LINFO = -4 ELSE IF( SIPIV /= N )THEN LINFO = -5 ELSE IF( SR /= N .OR. MVR <= 0.0_WP )THEN LINFO = -9 ELSE IF( SC /= N .OR. MVC <= 0.0_WP )THEN LINFO = -10 ELSE IF( SFERR /= NRHS )THEN LINFO = -11 ELSE IF( SBERR /= NRHS )THEN LINFO = -12 ELSE IF( ( .NOT. ( LSAME(LFACT,'F') .OR. LSAME(LFACT,'N') .OR. & & LSAME(LFACT,'E') ) ) .OR. & & ( LSAME(LFACT,'F') .AND. .NOT.( PRESENT(AF) .AND. & & PRESENT(IPIV) ) ) )THEN LINFO = -6 ELSE IF( .NOT.( LSAME(LTRANS,'N') .OR. LSAME(LTRANS,'T') .OR. & & LSAME(LTRANS,'C') ) )THEN LINFO = -7 ELSE IF( ( .NOT.( LSAME(LEQUED,'N') .OR. LSAME(LEQUED,'R') .OR. & & LSAME(LEQUED,'C') .OR. LSAME(LEQUED,'B') ) & & .AND. LSAME(LFACT,'F') ) .OR. & & ( ( LSAME(LEQUED,'R') .OR. LSAME(LEQUED,'B') ) .AND. & & .NOT.PRESENT(R) ) .OR. & & ( ( LSAME(LEQUED,'C') .OR. LSAME(LEQUED,'B') ) .AND. & & .NOT.PRESENT(C) ) )THEN LINFO = -8 ELSE IF ( N > 0 )THEN IF( .NOT.PRESENT(AF) ) THEN ALLOCATE( LAF(LD,N), STAT=ISTAT ) ELSE LAF => AF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(IPIV) )THEN ALLOCATE( LPIV(N), STAT=ISTAT ) ELSE LPIV => IPIV END IF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(R) )THEN ALLOCATE( LR(N), STAT=ISTAT ) ELSE LR => R END IF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(C) )THEN ALLOCATE( LC(N), STAT=ISTAT ) ELSE LC => C END IF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(FERR) )THEN ALLOCATE( LFERR(NRHS), STAT=ISTAT ) ELSE LFERR => FERR END IF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(BERR) )THEN ALLOCATE( LBERR(NRHS), STAT=ISTAT ) ELSE LBERR => BERR END IF END IF IF( ISTAT == 0 )THEN ALLOCATE(WORK(4*N), IWORK(N), STAT=ISTAT ) END IF IF( ISTAT == 0 )THEN ! .. CALL LAPACK77 ROUTINE CALL GESVX_F77( LFACT, LTRANS, N, NRHS, A, LD, LAF, LD, LPIV, LEQUED, LR, LC, B, LD, & X, LD, LRCOND, LFERR, LBERR, WORK, IWORK, LINFO ) ELSE LINFO = -100 END IF IF( .NOT.PRESENT(R) ) DEALLOCATE( LR, STAT=ISTAT1 ) IF( .NOT.PRESENT(C) ) DEALLOCATE( LC, STAT=ISTAT1 ) IF( .NOT.PRESENT(AF) ) DEALLOCATE( LAF, STAT=ISTAT1 ) IF( .NOT.PRESENT(IPIV) ) DEALLOCATE( LPIV, STAT=ISTAT1 ) IF( .NOT.PRESENT(FERR) ) DEALLOCATE( LFERR, STAT=ISTAT1 ) IF( .NOT.PRESENT(BERR) ) DEALLOCATE( LBERR, STAT=ISTAT1 ) IF( PRESENT(RPVGRW) ) RPVGRW=WORK(1) IF( PRESENT(RCOND) ) RCOND=LRCOND IF( PRESENT(EQUED) .AND. .NOT.LSAME(LFACT,'F') ) EQUED=LEQUED DEALLOCATE( WORK, IWORK, STAT=ISTAT1 ) END IF CALL ERINFO( LINFO, SRNAME, INFO, ISTAT ) END SUBROUTINE DGESVX_F95