SUBROUTINE SPPSVX_F95(A, B, X, UPLO, AF, FACT, EQUED, S, FERR, BERR, RCOND, INFO) ! ! -- LAPACK95 interface driver routine (version 3.0) -- ! UNI-C, Denmark; Univ. of Tennessee, USA; NAG Ltd., UK ! September, 2000 ! ! .. USE STATEMENTS .. USE LA_PRECISION, ONLY: WP => SP USE LA_AUXMOD, ONLY: LSAME, ERINFO USE F77_LAPACK, ONLY: PPSVX_F77 => LA_PPSVX ! .. IMPLICIT STATEMENT .. IMPLICIT NONE ! .. SCALAR ARGUMENTS .. CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO, FACT CHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: EQUED INTEGER, INTENT(OUT), OPTIONAL :: INFO REAL(WP), INTENT(OUT), OPTIONAL :: RCOND ! .. ARRAY ARGUMENTS .. REAL(WP), INTENT(INOUT) :: A(:), B(:,:) REAL(WP), INTENT(OUT) :: X(:,:) REAL(WP), INTENT(INOUT), OPTIONAL, TARGET :: S(:) REAL(WP), INTENT(INOUT), OPTIONAL, TARGET :: AF(:) REAL(WP), INTENT(OUT), OPTIONAL, TARGET :: FERR(:), BERR(:) !---------------------------------------------------------------------- ! ! Purpose ! ======= ! ! LA_PPSVX computes the solution to a linear system of equations ! A*X = B, where A is real symmetric or complex Hermitian and, in either ! case, positive definite, and where X and B are rectangular matrices or ! vectors. A is stored in packed format. ! LA_PPSVX can also optionally equilibrate the system if A is poorly ! scaled, estimate the condition number of (the equilibrated) A, and ! compute error bounds. ! ! ========= ! ! SUBROUTINE LA_PPSVX( AP, B, X, UPLO=uplo, AFP=afp, & ! FACT=fact, EQUED=equed, S=s, FERR=ferr, & ! BERR=berr, RCOND=rcond, INFO=info ) ! (), INTENT(INOUT) :: AP(:), ! (), INTENT(OUT) :: ! CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO ! (), INTENT(INOUT), OPTIONAL :: AFP(:) ! CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: FACT ! CHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: EQUED ! REAL(), INTENT(INOUT), OPTIONAL :: S(:) ! REAL(), INTENT(OUT), OPTIONAL :: ! REAL(), INTENT(OUT), OPTIONAL :: RCOND ! INTEGER, INTENT(OUT), OPTIONAL :: INFO ! where ! ::= REAL | COMPLEX ! ::= KIND(1.0) | KIND(1.0D0) ! ::= B(:,:) | B(:) ! ::= X(:,:) | X(:) ! ::= FERR(:), BERR(:) | FERR, BERR ! ! Arguments ! ========= ! ! AP (input/output) REAL or COMPLEX square array, shape (:) with ! size(AP) = n*(n + 1)=2, where n is a rank of the matrix A. ! On entry, the upper or lower triangle of matrix A, or its ! equilibration, in packed storage. The elements are stored ! columnwise as follows: ! if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j<=n; ! if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for 1<=j<=i<=n. ! On exit, if FACT = 'E', then the equilibrated version of A is ! stored in AP; otherwise, AP is unchanged. ! B (input/output) REAL or COMPLEX array, shape (:,:) with ! size(B,1) = n or shape (:) with size(B) = n. ! On entry, the matrix B. ! On exit, the scaled version of B if the system has been ! equilibrated; otherwise, B is unchanged. ! X (output) REAL or COMPLEX array, shape (:,:) with size(X,1)=n ! and size(X,2) = size(B,2), or shape (:) with size(X) = n. ! The solution matrix X . ! UPLO Optional (input) CHARACTER(LEN=1). ! = 'U': Upper triangle of A is stored; ! = 'L': Lower triangle of A is stored. ! Default value: 'U'. ! AFP Optional (input or output) REAL or COMPLEX array, shape (:) ! with the same size as AP. ! If FACT = 'F' then AFP is an input argument that contains the ! factor U or L from the Cholesky factorization of (the ! equilibrated) A, in the same storage format as A, returned by ! a previous call to LA_PPSVX. ! If FACT 6= 'F' then AFP is an output argument that contains the ! factor U or L from the Cholesky factorization of (the ! equilibrated) A in the same storage format as A. ! FACT Optional (input) CHARACTER(LEN=1). ! Specifies whether the factored form of the matrix A is supplied ! on entry, and, if not, whether A should be equilibrated before ! it is factored. ! = 'N': The matrix A will be copied to AFP and factored ! (no equilibration). ! = 'E': The matrix A will be equilibrated, then copied to AFP ! and factored. ! = 'F': AFP contains the factored form of (the equilibrated) A. ! Default value: 'N'. ! EQUED Optional (input or output) CHARACTER(LEN=1). ! Specifies the form of equilibration that was done. ! EQUED is an input argument if FACT = 'F', otherwise it is an ! output argument: ! = 'N': No equilibration (always true if FACT = 'N'). ! = 'Y': Equilibration, i.e., A has been premultiplied and ! postmultiplied by diag(S). ! Default value: 'N'. ! S Optional (input or output) REAL array, shape (:) with size(S) ! = size(A,1). ! The scaling factors for A. ! S is an input argument if FACT = 'F' and EQUED = 'Y'. ! S is an output argument if FACT = 'E' and EQUED = 'Y'. ! FERR Optional (output) REAL array of shape (:), with size(FERR) = ! size(X,2), or REAL scalar. ! The estimated forward error bound for each solution vector X(j) ! (the j-th column of the solution matrix X). If XTRUE is the ! true solution corresponding to X(j) , FERR(j) is an estimated ! upper bound for the magnitude of the largest element in ! (X(j)-XTRUE) divided by the magnitude of the largest element ! in X(j). The estimate is as reliable as the estimate for RCOND, ! and is almost always a slight overestimate of the true error. ! BERR Optional (output) REAL array of shape (:), with size(BERR) = ! size(X,2), or REAL scalar. ! The componentwise relative backward error of each solution ! vector X(j) (i.e., the smallest relative change in any element ! of A or B that makes X(j) an exact solution). ! RCOND Optional (output) REAL ! The estimate of the reciprocal condition number of (the ! equilibrated) A. If RCOND is less than the machine precision, ! the matrix is singular to working precision. This condition is ! indicated by a return code of INFO > 0. ! INFO Optional (output) INTEGER ! = 0: successful exit. ! < 0: if INFO = -i, the i-th argument had an illegal value. ! > 0: if INFO = i, and i is ! <= n: the leading minor of order i of (the equilibrated) A ! is not positive definite, so the factorization could ! not be completed and the solution and error bounds ! could not be computed. RCOND= 0 is returned. ! = n+1: U or L is nonsingular, but RCOND is less than ! machine precision, so the matrix is singular to ! working precision. Nevertheless, the solution and ! error bounds are computed because the computed solution ! can be more accurate than the value of RCOND would ! suggest. ! If INFO is not present and an error occurs, then the program is ! terminated with an error message. !----------------------------------------------------------------------- ! .. PARAMETERS .. CHARACTER(LEN=8), PARAMETER :: SRNAME = 'LA_PPSVX' ! .. LOCAL SCALARS .. CHARACTER(LEN=1) :: LFACT, LUPLO, LEQUED INTEGER :: LINFO, NRHS, N, NN, ISTAT, ISTAT1, SAF, SS, SFERR, SBERR REAL(WP) :: LRCOND, MVS COMPLEX(WP) :: WW ! .. LOCAL POINTERS .. INTEGER, POINTER :: IWORK(:) REAL(WP), POINTER :: LS(:), LFERR(:), LBERR(:) REAL(WP), POINTER :: WORK(:), LAF( :) ! .. INTRINSIC FUNCTIONS .. INTRINSIC PRESENT, SIZE, MINVAL, TINY, REAL, INT, AIMAG ! .. EXECUTABLE STATEMENTS .. LINFO = 0; ISTAT = 0; NN = SIZE(A, 1); NRHS = SIZE(B, 2) WW = (-1+SQRT(1+8*REAL(NN,WP)))*0.5; N = INT(WW) IF( PRESENT(RCOND) ) RCOND = 1.0_WP IF( PRESENT(FACT) )THEN; LFACT = FACT; ELSE; LFACT='N'; END IF IF( PRESENT(EQUED) .AND. LSAME(LFACT,'F') )THEN; LEQUED = EQUED ELSE; LEQUED='N'; END IF IF( PRESENT(AF) )THEN; SAF = SIZE(AF); ELSE; SAF = N*(N+1)/2; END IF IF( ( PRESENT(S) ) )THEN; SS = SIZE(S); ELSE; SS = N; END IF IF( PRESENT(S) .AND. LSAME(LFACT,'F') .AND. LSAME(LEQUED,'Y') ) THEN MVS = MINVAL(S); ELSE; MVS = TINY(1.0_WP); ENDIF IF( PRESENT(FERR) )THEN; SFERR = SIZE(FERR); ELSE; SFERR = NRHS; END IF IF( PRESENT(BERR) )THEN; SBERR = SIZE(BERR); ELSE; SBERR = NRHS; END IF IF(PRESENT(UPLO))THEN; LUPLO = UPLO; ELSE; LUPLO='U'; END IF ! .. TEST THE ARGUMENTS IF( NN < 0 .OR. AIMAG(WW) /= 0 .OR. REAL(N,WP) /= REAL(WW) ) THEN; LINFO = -1 ELSE IF( SIZE(B, 1) /= N .OR. NRHS < 0 )THEN; LINFO = -2 ELSE IF( SIZE(X, 1) /= N .OR. SIZE(X, 2) /= NRHS )THEN; LINFO = -3 ELSE IF( .NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L') )THEN; LINFO = -4 ELSE IF( SAF /= N*(N+1)/2 ) THEN; LINFO = -5 ELSE IF( ( .NOT. ( LSAME(LFACT,'F') .OR. LSAME(LFACT,'N') .OR. & LSAME(LFACT,'E') ) ) .OR. & ( LSAME(LFACT,'F') .AND. .NOT.PRESENT(AF) ) )THEN; LINFO = -6 ELSE IF( .NOT.LSAME(LEQUED,'N') .AND. .NOT.LSAME(LEQUED,'Y') )THEN; LINFO = -7 ELSE IF( SS /= N .OR. LSAME(LFACT,'F') .AND. LSAME(LEQUED,'Y') & .AND. MVS <= 0.0_WP )THEN; LINFO = -8 ELSE IF( SFERR /= NRHS )THEN; LINFO = -9 ELSE IF( SBERR /= NRHS )THEN; LINFO = -10 ELSE IF ( N > 0 )THEN IF( .NOT.PRESENT(AF) ) THEN; ALLOCATE( LAF(N*(N+1)/2), STAT=ISTAT ) ELSE; LAF => AF; END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(S) )THEN; ALLOCATE( LS(N), STAT=ISTAT ) ELSE; LS => S; END IF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(FERR) )THEN; ALLOCATE( LFERR(NRHS), STAT=ISTAT ) ELSE; LFERR => FERR; END IF END IF IF( ISTAT == 0 )THEN IF( .NOT.PRESENT(BERR) )THEN; ALLOCATE( LBERR(NRHS), STAT=ISTAT ) ELSE; LBERR => BERR; END IF END IF IF( ISTAT == 0 ) ALLOCATE(WORK(3*N), IWORK(N), STAT=ISTAT ) IF( ISTAT == 0 )THEN CALL PPSVX_F77( LFACT, LUPLO, N, NRHS, A, LAF, LEQUED, LS, & B, N, X, N, LRCOND, LFERR, LBERR, WORK, IWORK, LINFO ) ELSE; LINFO = -100; END IF IF( .NOT.PRESENT(S) ) DEALLOCATE( LS, STAT=ISTAT1 ) IF( .NOT.PRESENT(AF) ) DEALLOCATE( LAF, STAT=ISTAT1 ) IF( .NOT.PRESENT(FERR) ) DEALLOCATE( LFERR, STAT=ISTAT1 ) IF( .NOT.PRESENT(BERR) ) DEALLOCATE( LBERR, STAT=ISTAT1 ) IF( PRESENT(RCOND) ) RCOND=LRCOND IF( PRESENT(EQUED) .AND. .NOT.LSAME(LFACT,'F') ) EQUED=LEQUED DEALLOCATE( WORK, IWORK, STAT=ISTAT1 ) END IF CALL ERINFO( LINFO, SRNAME, INFO, ISTAT ) END SUBROUTINE SPPSVX_F95