//-------------------------------------------------------------------------- // Multi-lingual version of the first page of example 4. //-------------------------------------------------------------------------- // //-------------------------------------------------------------------------- // Copyright (C) 2006-2014 Alan W. Irwin // Copyright (C) 2006 Andrew Ross // // Thanks to the following for providing translated strings for this example: // Valery Pipin (Russian) // // This file is part of PLplot. // // PLplot is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; version 2 of the License. // // PLplot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with PLplot; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA //-------------------------------------------------------------------------- // This example designed just for devices (e.g., psttfc and the // cairo-related devices) that use the pango and fontconfig libraries. The // best choice of glyph is selected by fontconfig and automatically rendered // by pango in way that is sensitive to complex text layout (CTL) language // issues for each unicode character in this example. Of course, you must // have the appropriate TrueType fonts installed to have access to all the // required glyphs. // // Translation instructions: The strings to be translated are given by // x_label, y_label, alty_label, title_label, and line_label below. The // encoding used must be UTF-8. // // The following strings to be translated involve some scientific/mathematical // jargon which is now discussed further to help translators. // // (1) dB is a decibel unit, see http://en.wikipedia.org/wiki/Decibel . // (2) degrees is an angular measure, see // http://en.wikipedia.org/wiki/Degree_(angle) . // (3) low-pass filter is one that transmits (passes) low frequencies. // (4) pole is in the mathematical sense, see // http://en.wikipedia.org/wiki/Pole_(complex_analysis) . "Single Pole" // means a particular mathematical transformation of the filter function has // a single pole, see // http://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html . // Furthermore, a single-pole filter must have an inverse square decline // (or -20 db/decade). Since the filter plotted here does have that // characteristic, it must by definition be a single-pole filter, see also // http://www-k.ext.ti.com/SRVS/Data/ti/KnowledgeBases/analog/document/faqs/1p.htm // (5) decade represents a factor of 10, see // http://en.wikipedia.org/wiki/Decade_(log_scale) . //-------------------------------------------------------------------------- // Implementation of PLplot example 26 in C++. //-------------------------------------------------------------------------- #include "plc++demos.h" #ifdef PL_USE_NAMESPACE using namespace std; #endif static const char *x_label[] = { "Frequency", "Частота", NULL }; static const char *y_label[] = { "Amplitude (dB)", "Амплитуда (dB)", NULL }; static const char *alty_label[] = { "Phase shift (degrees)", "Фазовый сдвиг (градусы)", NULL }; // Short rearranged versions of y_label and alty_label. static const char *legend_text[][2] = { { "Amplitude", "Phase shift" }, { "Амплитуда", "Фазовый сдвиг" } }; static const char *title_label[] = { "Single Pole Low-Pass Filter", "Однополюсный Низко-Частотный Фильтр", NULL }; static const char *line_label[] = { "-20 dB/decade", "-20 dB/десяток", NULL }; class x26 { public: x26( int, char ** ); void plot1( int, const char*, const char*, const char*, const char**, const char*, const char* ); private: // Class data plstream *pls; }; x26::x26( int argc, char ** argv ) { int i; // plplot initialization pls = new plstream(); // Parse and process command line arguments. pls->parseopts( &argc, argv, PL_PARSE_FULL ); // Initialize PLplot. pls->init(); pls->font( 2 ); // Make log plots using two different styles. i = 0; while ( x_label[i] != NULL ) { plot1( 0, x_label[i], y_label[i], alty_label[i], legend_text[i], title_label[i], line_label[i] ); i++; } // pls->end(); delete pls; } // Log-linear plot. void x26::plot1( int type, const char *x_label, const char *y_label, const char *alty_label, const char **legend_text, const char *title_label, const char *line_label ) { int i; PLFLT *freql = new PLFLT[101]; PLFLT *ampl = new PLFLT[101]; PLFLT *phase = new PLFLT[101]; PLFLT f0, freq; PLINT nlegend = 2; PLINT opt_array[2]; PLINT text_colors[2]; PLINT line_colors[2]; PLINT line_styles[2]; PLFLT line_widths[2]; PLINT symbol_numbers[2], symbol_colors[2]; PLFLT symbol_scales[2]; const char *symbols[2]; PLFLT legend_width, legend_height; pls->adv( 0 ); // Set up data for log plot. f0 = 1.0; for ( i = 0; i <= 100; i++ ) { freql[i] = -2.0 + i / 20.0; freq = pow( 10.0, freql[i] ); ampl[i] = 20.0 * log10( 1.0 / sqrt( 1.0 + pow( ( freq / f0 ), 2. ) ) ); phase[i] = -( 180.0 / M_PI ) * atan( (PLFLT) ( freq / f0 ) ); } pls->vpor( 0.15, 0.85, 0.1, 0.9 ); pls->wind( -2.0, 3.0, -80.0, 0.0 ); // Try different axis and labelling styles. pls->col0( 1 ); switch ( type ) { case 0: pls->box( "bclnst", 0.0, 0, "bnstv", 0.0, 0 ); break; case 1: pls->box( "bcfghlnst", 0.0, 0, "bcghnstv", 0.0, 0 ); break; } // Plot ampl vs freq. pls->col0( 2 ); pls->line( 101, freql, ampl ); pls->col0( 2 ); pls->ptex( 1.6, -30.0, 1.0, -20.0, 0.5, line_label ); // Put labels on. pls->col0( 1 ); pls->mtex( "b", 3.2, 0.5, 0.5, x_label ); pls->mtex( "t", 2.0, 0.5, 0.5, title_label ); pls->col0( 2 ); pls->mtex( "l", 5.0, 0.5, 0.5, y_label ); // For the gridless case, put phase vs freq on same plot. if ( type == 0 ) { pls->col0( 1 ); pls->wind( -2.0, 3.0, -100.0, 0.0 ); pls->box( "", 0.0, 0, "cmstv", 30.0, 3 ); pls->col0( 3 ); pls->line( 101, freql, phase ); pls->string( 101, freql, phase, "#(728)" ); pls->col0( 3 ); pls->mtex( "r", 5.0, 0.5, 0.5, alty_label ); } // Draw a legend // First legend entry. opt_array[0] = PL_LEGEND_LINE; text_colors[0] = 2; line_colors[0] = 2; line_styles[0] = 1; line_widths[0] = 1.0; // note from the above opt_array the first symbol (and box) indices // do not have to be specified // Second legend entry. opt_array[1] = PL_LEGEND_LINE | PL_LEGEND_SYMBOL; text_colors[1] = 3; line_colors[1] = 3; line_styles[1] = 1; line_widths[1] = 1.0; symbol_colors[1] = 3; symbol_scales[1] = 1.; symbol_numbers[1] = 4; symbols[1] = "#(728)"; // from the above opt_arrays we can completely ignore everything // to do with boxes. pls->scol0a( 15, 32, 32, 32, 0.70 ); pls->legend( &legend_width, &legend_height, PL_LEGEND_BACKGROUND | PL_LEGEND_BOUNDING_BOX, 0, 0.0, 0.0, 0.10, 15, 1, 1, 0, 0, nlegend, opt_array, 1.0, 1.0, 2.0, 1., text_colors, (const char * const *) legend_text, NULL, NULL, NULL, NULL, line_colors, line_styles, line_widths, symbol_colors, symbol_scales, symbol_numbers, (const char **) symbols ); delete[] freql; delete[] ampl; delete[] phase; } int main( int argc, char ** argv ) { x26 *x = new x26( argc, argv ); delete x; } //-------------------------------------------------------------------------- // End of x26.cc //--------------------------------------------------------------------------