// Sample plots using date / time formatting for axes // // Copyright (C) 2007 Andrew Ross // // This file is part of PLplot. // // PLplot is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published // by the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PLplot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with PLplot; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // #include "plc++demos.h" #ifdef PL_USE_NAMESPACE using namespace std; #endif #include class x29 { public: x29( int, char ** ); private: plstream *pls; PLFLT x[365], y[365]; PLFLT xerr1[365], xerr2[365], yerr1[365], yerr2[365]; // Function prototypes void plot1(); void plot2(); void plot3(); void plot4(); PLFLT MIN( PLFLT x, PLFLT y ) { return ( x < y ? x : y ); }; PLFLT MAX( PLFLT x, PLFLT y ) { return ( x > y ? x : y ); }; }; //-------------------------------------------------------------------------- // // main // // Draws several plots which demonstrate the use of date / time formats for // the axis labels. // Time formatting is done using the system strftime routine. See the // documentation of this for full details of the available formats. // // 1) Plotting temperature over a day (using hours / minutes) // 2) Plotting // // Note: Times are stored as seconds since the epoch (usually 1st Jan 1970). // //-------------------------------------------------------------------------- x29::x29( int argc, char *argv[] ) { pls = new plstream(); // Parse command line arguments pls->parseopts( &argc, argv, PL_PARSE_FULL ); // Initialize plplot pls->init(); pls->sesc( '@' ); plot1(); plot2(); plot3(); plot4(); delete pls; } // Plot a model diurnal cycle of temperature void x29::plot1() { int i, npts; PLFLT xmin, xmax, ymin, ymax; // Data points every 10 minutes for 1 day npts = 73; xmin = 0; xmax = 60.0 * 60.0 * 24.0; // Number of seconds in a day ymin = 10.0; ymax = 20.0; for ( i = 0; i < npts; i++ ) { x[i] = xmax * ( (PLFLT) i / (PLFLT) npts ); y[i] = 15.0 - 5.0 * cos( 2 * M_PI * ( (PLFLT) i / (PLFLT) npts ) ); // Set x error bars to +/- 5 minute xerr1[i] = x[i] - 60 * 5; xerr2[i] = x[i] + 60 * 5; // Set y error bars to +/- 0.1 deg C yerr1[i] = y[i] - 0.1; yerr2[i] = y[i] + 0.1; } pls->adv( 0 ); // Rescale major ticks marks by 0.5 pls->smaj( 0.0, 0.5 ); // Rescale minor ticks and error bar marks by 0.5 pls->smin( 0.0, 0.5 ); pls->vsta(); pls->wind( xmin, xmax, ymin, ymax ); // Draw a box with ticks spaced every 3 hour in X and 1 degree C in Y. pls->col0( 1 ); // Set time format to be hours:minutes pls->timefmt( "%H:%M" ); pls->box( "bcnstd", 3.0 * 60 * 60, 3, "bcnstv", 1, 5 ); pls->col0( 3 ); pls->lab( "Time (hours:mins)", "Temperature (degC)", "@frPLplot Example 29 - Daily temperature" ); pls->col0( 4 ); pls->line( npts, x, y ); pls->col0( 2 ); pls->errx( npts, xerr1, xerr2, y ); pls->col0( 3 ); pls->erry( npts, x, yerr1, yerr2 ); // Rescale major / minor tick marks back to default pls->smin( 0.0, 1.0 ); pls->smaj( 0.0, 1.0 ); } // Plot the number of hours of daylight as a function of day for a year void x29::plot2() { int j, npts; PLFLT xmin, xmax, ymin, ymax; PLFLT lat, p, d; // Latitude for London lat = 51.5; npts = 365; xmin = 0; xmax = npts * 60.0 * 60.0 * 24.0; ymin = 0; ymax = 24; // Formula for hours of daylight from // "A Model Comparison for Daylength as a Function of Latitude and // Day of the Year", 1995, Ecological Modelling, 80, pp 87-95. for ( j = 0; j < npts; j++ ) { x[j] = j * 60.0 * 60.0 * 24.0; p = asin( 0.39795 * cos( 0.2163108 + 2 * atan( 0.9671396 * tan( 0.00860 * ( j - 186 ) ) ) ) ); d = 24.0 - ( 24.0 / M_PI ) * acos( ( sin( 0.8333 * M_PI / 180.0 ) + sin( lat * M_PI / 180.0 ) * sin( p ) ) / ( cos( lat * M_PI / 180.0 ) * cos( p ) ) ); y[j] = d; } pls->col0( 1 ); // Set time format to be abbreviated month name followed by day of month pls->timefmt( "%b %d" ); pls->prec( 1, 1 ); pls->env( xmin, xmax, ymin, ymax, 0, 40 ); pls->col0( 3 ); pls->lab( "Date", "Hours of daylight", "@frPLplot Example 29 - Hours of daylight at 51.5N" ); pls->col0( 4 ); pls->line( npts, x, y ); pls->prec( 0, 0 ); } void x29::plot3() { int i, npts; PLFLT xmin, xmax, ymin, ymax; PLFLT tstart; // Calculate continuous time corresponding to 2005-12-01 UTC. pls->ctime( 2005, 11, 01, 0, 0, 0., tstart ); npts = 62; xmin = tstart; xmax = xmin + npts * 60.0 * 60.0 * 24.0; ymin = 0.0; ymax = 5.0; for ( i = 0; i < npts; i++ ) { x[i] = xmin + i * 60.0 * 60.0 * 24.0; y[i] = 1.0 + sin( 2 * M_PI * ( (PLFLT) i ) / 7.0 ) + exp( ( (PLFLT) MIN( i, npts - i ) ) / 31.0 ); } pls->adv( 0 ); pls->vsta(); pls->wind( xmin, xmax, ymin, ymax ); pls->col0( 1 ); // Set time format to be ISO 8601 standard YYYY-MM-HH. Note that this is // equivalent to %f for C99 compliant implementations of strftime. pls->timefmt( "%Y-%m-%d" ); // Draw a box with ticks spaced every 14 days in X and 1 hour in Y. pls->box( "bcnstd", 14 * 24.0 * 60.0 * 60.0, 14, "bcnstv", 1, 4 ); pls->col0( 3 ); pls->lab( "Date", "Hours of television watched", "@frPLplot Example 29 - Hours of television watched in Dec 2005 / Jan 2006" ); pls->col0( 4 ); // Rescale symbol size (used by plpoin) by 0.5 pls->ssym( 0.0, 0.5 ); pls->poin( npts, x, y, 2 ); pls->line( npts, x, y ); } void x29::plot4() { // TAI-UTC (seconds) as a function of time. // Use Besselian epochs as the continuous time interval just to prove // this does not introduce any issues. PLFLT scale; PLFLT xmin = 0.0, xmax = 0.0, ymin = 0.0, ymax = 0.0, xlabel_step = 0.0; int kind, npts = 0, if_TAI_time_format = 0, i; char time_format[10]; char title_suffix[100]; char xtitle[100]; char title[100]; PLFLT x[1001], y[1001]; PLINT epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min; PLFLT epoch_sec; PLINT tai_year, tai_month, tai_day, tai_hour, tai_min; PLFLT tai_sec, tai; PLINT utc_year, utc_month, utc_day, utc_hour, utc_min; PLFLT utc_sec, utc; // Continuous time unit is Besselian years from whatever epoch is // chosen below. Could change to seconds (or days) from the // epoch, but then would have to adjust xlabel_step below. scale = 365.242198781; // MJD epoch (see ). // This is only set for illustrative purposes, and is overwritten // below for the time-representation reasons given in the // discussion below. epoch_year = 1858; epoch_month = 11; epoch_day = 17; epoch_hour = 0; epoch_min = 0; epoch_sec = 0.; // To illustrate the time-representation issues of using the MJD // epoch, in 1985, MJD was roughly 46000 days which corresponds to // 4e9 seconds. Thus, for the -DPL_DOUBLE=ON case where PLFLT is // a double which can represent continuous time to roughly 16 // decimal digits of precision the time-representation error is // roughly ~400 nanoseconds. Therefore the MJD epoch would be // acceptable for the plots below in the -DPL_DOUBLE=ON case. // However, that epoch is obviously not acceptable for the // -DPL_DOUBLE=OFF case where PLFLT is a float which can represent // continuous time to only ~7 decimal digits of precision // corresponding to a time representation error of 400 seconds (!) // in 1985. For this reason, we do not use the MJD epoch below // and instead choose the best epoch for each case to minimize // time-representation issues. for ( kind = 0; kind < 7; kind++ ) { if ( kind == 0 ) { // Choose midpoint to maximize time-representation precision. epoch_year = 1985; epoch_month = 0; epoch_day = 2; epoch_hour = 0; epoch_min = 0; epoch_sec = 0.; pls->configtime( scale, 0., 0., 0x0, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); pls->ctime( 1950, 0, 2, 0, 0, 0., xmin ); pls->ctime( 2020, 0, 2, 0, 0, 0., xmax ); npts = 70 * 12 + 1; ymin = 0.0; ymax = 36.0; strncpy( time_format, "%Y%", 10 ); if_TAI_time_format = 1; strncpy( title_suffix, "from 1950 to 2020", 100 ); strncpy( xtitle, "Year", 100 ); xlabel_step = 10.; } else if ( kind == 1 || kind == 2 ) { // Choose midpoint to maximize time-representation precision. epoch_year = 1961; epoch_month = 7; epoch_day = 1; epoch_hour = 0; epoch_min = 0; epoch_sec = 1.64757; pls->configtime( scale, 0., 0., 0x0, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); pls->ctime( 1961, 7, 1, 0, 0, 1.64757 - .20, xmin ); pls->ctime( 1961, 7, 1, 0, 0, 1.64757 + .20, xmax ); npts = 1001; ymin = 1.625; ymax = 1.725; strncpy( time_format, "%S%2%", 10 ); strncpy( title_suffix, "near 1961-08-01 (TAI)", 100 ); xlabel_step = 0.05 / ( scale * 86400. ); if ( kind == 1 ) { if_TAI_time_format = 1; strncpy( xtitle, "Seconds (TAI)", 100 ); } else { if_TAI_time_format = 0; strncpy( xtitle, "Seconds (TAI) labelled with corresponding UTC", 100 ); } } else if ( kind == 3 || kind == 4 ) { // Choose midpoint to maximize time-representation precision. epoch_year = 1963; epoch_month = 10; epoch_day = 1; epoch_hour = 0; epoch_min = 0; epoch_sec = 2.697278; pls->configtime( scale, 0., 0., 0x0, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); pls->ctime( 1963, 10, 1, 0, 0, 2.6972788 - .20, xmin ); pls->ctime( 1963, 10, 1, 0, 0, 2.6972788 + .20, xmax ); npts = 1001; ymin = 2.55; ymax = 2.75; strncpy( time_format, "%S%2%", 10 ); strncpy( title_suffix, "near 1963-11-01 (TAI)", 100 ); xlabel_step = 0.05 / ( scale * 86400. ); if ( kind == 3 ) { if_TAI_time_format = 1; strncpy( xtitle, "Seconds (TAI)", 100 ); } else { if_TAI_time_format = 0; strncpy( xtitle, "Seconds (TAI) labelled with corresponding UTC", 100 ); } } else if ( kind == 5 || kind == 6 ) { // Choose midpoint to maximize time-representation precision. epoch_year = 2009; epoch_month = 0; epoch_day = 1; epoch_hour = 0; epoch_min = 0; epoch_sec = 34.; pls->configtime( scale, 0., 0., 0x0, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); pls->ctime( 2009, 0, 1, 0, 0, 34. - 5., xmin ); pls->ctime( 2009, 0, 1, 0, 0, 34. + 5., xmax ); npts = 1001; ymin = 32.5; ymax = 34.5; strncpy( time_format, "%S%2%", 10 ); strncpy( title_suffix, "near 2009-01-01 (TAI)", 100 ); xlabel_step = 1. / ( scale * 86400. ); if ( kind == 5 ) { if_TAI_time_format = 1; strncpy( xtitle, "Seconds (TAI)", 100 ); } else { if_TAI_time_format = 0; strncpy( xtitle, "Seconds (TAI) labelled with corresponding UTC", 100 ); } } for ( i = 0; i < npts; i++ ) { x[i] = xmin + i * ( xmax - xmin ) / ( (PLFLT) ( npts - 1 ) ); tai = x[i]; pls->configtime( scale, 0., 0., 0x0, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); pls->btime( tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec, tai ); // Calculate residual using tai as the epoch to nearly maximize time-representation precision. pls->configtime( scale, 0., 0., 0x0, 1, tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec ); // Calculate continuous tai with new epoch. pls->ctime( tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec, tai ); // Calculate broken-down utc (with leap seconds inserted) from continuous tai with new epoch. pls->configtime( scale, 0., 0., 0x2, 1, tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec ); pls->btime( utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec, tai ); // Calculate continuous utc from broken-down utc using same epoch as for the continuous tai. pls->configtime( scale, 0., 0., 0x0, 1, tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec ); pls->ctime( utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec, utc ); // Convert residuals to seconds. y[i] = ( tai - utc ) * scale * 86400.; } pls->adv( 0 ); pls->vsta(); pls->wind( xmin, xmax, ymin, ymax ); pls->col0( 1 ); if ( if_TAI_time_format ) pls->configtime( scale, 0., 0., 0x0, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); else pls->configtime( scale, 0., 0., 0x2, 1, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec ); pls->timefmt( time_format ); pls->box( "bcnstd", xlabel_step, 0, "bcnstv", 0., 0 ); pls->col0( 3 ); strncpy( title, "@frPLplot Example 29 - TAI-UTC ", 100 ); strncat( title, title_suffix, 100 - strlen( title ) - 1 ); pls->lab( xtitle, "TAI-UTC (sec)", title ); pls->col0( 4 ); pls->line( npts, x, y ); } } int main( int argc, char **argv ) { x29 *x = new x29( argc, argv ); delete x; }