! Vector plot demo. ! ! Copyright (C) 2004-2016 Alan W. Irwin ! Copyright (C) 2004 Andrew Ross ! ! This file is part of PLplot. ! ! PLplot is free software; you can redistribute it and/or modify ! it under the terms of the GNU Library General Public License as ! published by the Free Software Foundation; either version 2 of the ! License, or (at your option) any later version. ! ! PLplot is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU Library General Public License for more details. ! ! You should have received a copy of the GNU Library General Public ! License along with PLplot; if not, write to the Free Software ! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ! N.B. the pl_test_flt parameter used in this code is only ! provided by the plplot module to allow convenient developer ! testing of either kind(1.0) or kind(1.0d0) floating-point ! precision regardless of the floating-point precision of the ! PLplot C libraries. We do not guarantee the value of this test ! parameter so it should not be used by users, and instead user ! code should replace the pl_test_flt parameter by whatever ! kind(1.0) or kind(1.0d0) precision is most convenient for them. ! For further details on floating-point precision issues please ! consult README_precision in this directory. ! ! Does several contour plots using different coordinate mappings. program x22f use plplot, double_PI => PL_PI use plfortrandemolib use iso_c_binding, only: c_ptr, c_loc, c_f_pointer implicit none real(kind=pl_test_flt), parameter :: PI = double_PI integer, parameter :: double = kind(1.0d0) real(kind=double) common_max integer narr integer :: plparseopts_rc logical fill parameter (narr=6) real(kind=pl_test_flt) arrow_x(narr),arrow_y(narr), & arrow2_x(narr),arrow2_y(narr) type callback_data_type ! Only contains data required by the tranform_data callback real(kind=double) max end type callback_data_type data arrow_x/-0.5_pl_test_flt, 0.5_pl_test_flt, 0.3_pl_test_flt, 0.5_pl_test_flt, 0.3_pl_test_flt, 0.5_pl_test_flt/ data arrow_y/0._pl_test_flt, 0._pl_test_flt, 0.2_pl_test_flt, 0._pl_test_flt, -0.2_pl_test_flt, 0._pl_test_flt/ data arrow2_x/-0.5_pl_test_flt, 0.3_pl_test_flt, 0.3_pl_test_flt, 0.5_pl_test_flt, 0.3_pl_test_flt, 0.3_pl_test_flt/ data arrow2_y/0._pl_test_flt, 0._pl_test_flt, 0.2_pl_test_flt, 0._pl_test_flt, -0.2_pl_test_flt, 0._pl_test_flt/ real(kind=pl_test_flt) :: tr(6), xmin_global, xmax_global, ymin_global, ymax_global integer :: nx_global, ny_global type mypltr_data_type ! Only contains data required by the mypltr_data callback real(kind=pl_test_flt), dimension(6) :: tr_data end type mypltr_data_type type(mypltr_data_type), target :: data ! Use tr plcont callback? logical, parameter :: tr_callback = .false. ! Use pltr0 (identity transformation) callback? (only meaningful ! if tr_callback is .false.). logical, parameter :: identity_callback = .false. ! Use Fortran callback with no data? (only meaningful ! if tr_callback and identity_callback are .false.). logical, parameter :: mypltr_callback = .false. ! use plstransform callback without data? logical, parameter :: ifno_transform_data = .false. ! Process command-line arguments plparseopts_rc = plparseopts(PL_PARSE_FULL) if(plparseopts_rc .ne. 0) stop "plparseopts error" ! I believe tr must be declared and defined globally this way in ! order for mypltr in circulation to work properly, and I would otherwise declare ! and define tr locally in that routine. ! Consistent with nx and ny in circulation. nx_global = 20 ny_global = 20 ! Must be consistent with actual ranges of xg and yg arrays in circulation ! so these values not exactly the same as xmin, xmax, ymin, and ymax there. xmin_global = - real(nx_global / 2, kind=pl_test_flt) + 0.5_pl_test_flt xmax_global = xmin_global + real(nx_global-1, kind=pl_test_flt) ymin_global = - real(ny_global / 2, kind=pl_test_flt) + 0.5_pl_test_flt ymax_global = ymin_global + real(ny_global-1, kind=pl_test_flt) tr = [(xmax_global-xmin_global)/real(nx_global-1,kind=pl_test_flt), 0.0_pl_test_flt, xmin_global, & 0.0_pl_test_flt, (ymax_global-ymin_global)/real(ny_global-1,kind=pl_test_flt), ymin_global ] call plinit call circulation fill = .false. ! Set arrow style using arrow_x and arrow_y the ! plot using these arrows call plsvect(arrow_x, arrow_y, fill) call constriction( 1 ) ! Set arrow style using arrow_x and arrow_y the ! plot using these arrows fill = .true. call plsvect(arrow2_x, arrow2_y, fill) call constriction( 2 ) call constriction2 call plsvect call potential call plend contains ! Callback function that relies on global tr. subroutine mypltr( x, y, xt, yt ) ! These callback arguments must have exactly these attributes. real(kind=pl_test_flt), intent(in) :: x, y real(kind=pl_test_flt), intent(out) :: xt, yt xt = tr(1) * x + tr(2) * y + tr(3) yt = tr(4) * x + tr(5) * y + tr(6) end subroutine mypltr ! Callback function that uses data argument to pass tr information. subroutine mypltr_data( x, y, xt, yt, data ) ! These callback arguments must have exactly these attributes. real(kind=pl_test_flt), intent(in) :: x, y real(kind=pl_test_flt), intent(out) :: xt, yt type(c_ptr), intent(in) :: data type(mypltr_data_type), pointer :: d call c_f_pointer(data, d) xt = d%tr_data(1) * x + d%tr_data(2) * y + d%tr_data(3) yt = d%tr_data(4) * x + d%tr_data(5) * y + d%tr_data(6) end subroutine mypltr_data ! vector plot of the circulation around the origin subroutine circulation() integer, parameter :: nx=20, ny=20 real(kind=pl_test_flt), allocatable :: u(:,:), v(:,:), xg(:), yg(:) real(kind=pl_test_flt) :: dx, dy, xmin, xmax, ymin, ymax real(kind=pl_test_flt) :: scaling dx = 1.0_pl_test_flt dy = 1.0_pl_test_flt xmin = -real(nx,kind=pl_test_flt)/2.0_pl_test_flt*dx xmax = real(nx,kind=pl_test_flt)/2.0_pl_test_flt*dx ymin = -real(ny,kind=pl_test_flt)/2.0_pl_test_flt*dy ymax = real(ny,kind=pl_test_flt)/2.0_pl_test_flt*dy allocate( xg(nx), yg(ny) ) xg = (arange(nx) + (-nx/2.0_pl_test_flt+0.5_pl_test_flt))*dx yg = (arange(ny) + (-ny/2.0_pl_test_flt+0.5_pl_test_flt))*dy allocate( u(nx,ny), v(nx,ny) ) u = spread(yg,1,nx) v = -spread(xg,2,ny) if(.not. tr_callback .and. identity_callback) then ! This scaling the same as if xmin, xmax, ymin, and ymax ! replaced in plenv call below by actual minimum and maximum ! xg and yg values. So along with different tick marks you ! will also get slightly different scaling with this alternative ! compared to all other results. call plenv( & real(0,kind=pl_test_flt), real(nx-1,kind=pl_test_flt), & real(0,kind=pl_test_flt), real(ny-1,kind=pl_test_flt), 0, 0) else call plenv(xmin, xmax, ymin, ymax, 0, 0) endif call pllab('(x)', '(y)', & '#frPLplot Example 22 - circulation') call plcol0(2) scaling = 0.0_pl_test_flt if(tr_callback) then call plvect(u,v,scaling,tr) elseif(identity_callback) then call plvect(u,v,scaling) elseif(mypltr_callback) then call plvect(u,v,scaling, mypltr) else data%tr_data = tr call plvect(u,v,scaling, mypltr_data, c_loc(data)) endif call plcol0(1) end subroutine circulation ! vector plot of the flow through a constricted pipe subroutine constriction( astyle ) integer i, j, nx, ny, astyle parameter (nx=20, ny=20) character(len=80) :: title real(kind=pl_test_flt) :: u(nx, ny), v(nx, ny) real(kind=pl_test_flt), allocatable :: xg(:), yg(:) real(kind=pl_test_flt) dx, dy, xmin, xmax, ymin, ymax real(kind=pl_test_flt) xx, yy, Q, b, dbdx, scaling dx = 1.0_pl_test_flt dy = 1.0_pl_test_flt xmin = -real(nx,kind=pl_test_flt)/2.0_pl_test_flt*dx xmax = real(nx,kind=pl_test_flt)/2.0_pl_test_flt*dx ymin = -real(ny,kind=pl_test_flt)/2.0_pl_test_flt*dy ymax = real(ny,kind=pl_test_flt)/2.0_pl_test_flt*dy Q = 2.0_pl_test_flt allocate( xg(nx), yg(ny) ) xg = (arange(nx) + (-nx/2.0_pl_test_flt+0.5_pl_test_flt))*dx yg = (arange(ny) + (-ny/2.0_pl_test_flt+0.5_pl_test_flt))*dy do i=1,nx xx = xg(i) do j=1,ny yy = yg(j) b = ymax/4.0_pl_test_flt*(3.0_pl_test_flt-cos(PI*xx/xmax)) if (abs(yy).lt.b) then dbdx = ymax/4.0_pl_test_flt*sin(PI*xx/xmax)*PI/xmax*yy/b u(i,j) = Q*ymax/b v(i,j) = u(i,j)*dbdx else u(i,j) = 0.0_pl_test_flt v(i,j) = 0.0_pl_test_flt endif enddo enddo call plenv(xmin, xmax, ymin, ymax, 0, 0) write(title,'(A,I0,A)') '#frPLplot Example 22 - constriction (arrow style ', astyle,')' call pllab('(x)', '(y)', title) call plcol0(2) scaling = -1.0_pl_test_flt call plvect(u,v,scaling,xg,yg) call plcol0(1) end subroutine constriction ! Global transform function for a constriction using data passed in ! This is the same transformation used in constriction. ! Note: ! We need to use double precision here, independent of what precision is used ! in the rest of the program ! subroutine transform( x, y, xt, yt ) ! These callback arguments must have exactly these attributes. real(kind=double), intent(in) :: x, y real(kind=double), intent(out) :: xt, yt xt = x yt = y / 4.0_pl_test_flt * ( 3.0_pl_test_flt - cos( PI * x / common_max ) ) end subroutine transform ! Variant of transform that carries a generic data argument. subroutine transform_data( x, y, xt, yt, data ) ! These callback arguments must have exactly these attributes. real(kind=double), intent(in) :: x, y real(kind=double), intent(out) :: xt, yt type(c_ptr), intent(in) :: data type(callback_data_type), pointer :: d call c_f_pointer(data, d) xt = x yt = y / 4.0_pl_test_flt * ( 3.0_pl_test_flt - cos( PI * x / d%max ) ) end subroutine transform_data ! Vector plot of flow through a constricted pipe ! with a coordinate transform subroutine constriction2() integer, parameter :: nx=20, ny=20, nc=11, nseg=20 real(kind=pl_test_flt) dx, dy real(kind=pl_test_flt) xmin, xmax, ymin, ymax real(kind=pl_test_flt) Q, scaling real(kind=pl_test_flt), allocatable :: xg(:), yg(:), b(:), u(:,:), v(:,:), clev(:) type(callback_data_type), target :: data dx = 1.0_pl_test_flt dy = 1.0_pl_test_flt xmin = -real(nx,kind=pl_test_flt)/2.0_pl_test_flt*dx xmax = real(nx,kind=pl_test_flt)/2.0_pl_test_flt*dx ymin = -real(ny,kind=pl_test_flt)/2.0_pl_test_flt*dy ymax = real(ny,kind=pl_test_flt)/2.0_pl_test_flt*dy common_max = ymax data%max = common_max allocate( b(nx) ) allocate( xg(nx), yg(ny) ) allocate( u(nx,ny), v(nx,ny) ) allocate( clev(nc) ) if(ifno_transform_data) then call plstransform( transform ) else call plstransform( transform_data, c_loc(data)) endif Q = 2.0_pl_test_flt xg = (arange(nx) + (-nx/2.0_pl_test_flt+0.5_pl_test_flt))*dx yg = (arange(ny) + (-ny/2.0_pl_test_flt+0.5_pl_test_flt))*dy b = Q*4.0_pl_test_flt/(3.0_pl_test_flt-cos(PI*xg/xmax)) u = spread(b,2,ny) v = 0.0_pl_test_flt*u clev = Q + arange(nc) * (Q/real(nc-1,kind=pl_test_flt)) call plenv(xmin, xmax, ymin, ymax, 0, 0) call pllab('(x)', '(y)', & '#frPLplot Example 22 - constriction with plstransform') call plcol0(2) call plshades(u, xmin + dx / 2.0_pl_test_flt, & xmax - dx / 2.0_pl_test_flt, & ymin + dy / 2.0_pl_test_flt, ymax - dy / 2.0_pl_test_flt, & clev, 0.0_pl_test_flt, 1, 1.0_pl_test_flt, .false. ) scaling = -1.0_pl_test_flt call plvect(u,v,scaling,xg,yg) call plpath(nseg, xmin, ymax, xmax, ymax) call plpath(nseg, xmin, ymin, xmax, ymin) call plcol0(1) call plstransform() end subroutine constriction2 subroutine potential() integer i, j, nr, ntheta, nper, nlevel parameter (nr=20, ntheta=20, nper=100, nlevel=10) real(kind=pl_test_flt) u(nr, ntheta), v(nr, ntheta), z(nr, ntheta) real(kind=pl_test_flt) xg(nr,ntheta), yg(nr,ntheta) real(kind=pl_test_flt) clevel(nlevel), px(nper), py(nper) real(kind=pl_test_flt) xmin, xmax, ymin, ymax, zmin, zmax, rmax real(kind=pl_test_flt) xx, yy, r, theta, scaling, dz real(kind=pl_test_flt) eps, q1, d1, q1i, d1i, q2, d2, q2i, d2i real(kind=pl_test_flt) div1, div1i, div2, div2i rmax = real(nr,kind=pl_test_flt) eps = 2.0_pl_test_flt q1 = 1.0_pl_test_flt d1 = rmax/4.0_pl_test_flt q1i = - q1*rmax/d1 d1i = rmax**2.0_pl_test_flt/d1 q2 = -1.0_pl_test_flt d2 = rmax/4.0_pl_test_flt q2i = - q2*rmax/d2 d2i = rmax**2.0_pl_test_flt/d2 do i = 1, nr r = 0.5 + real(i-1,kind=pl_test_flt) do j = 1, ntheta theta = 2.*PI/real(ntheta-1,kind=pl_test_flt)*(real(j,kind=pl_test_flt)-0.5) xx = r*cos(theta) yy = r*sin(theta) xg(i,j) = xx yg(i,j) = yy div1 = sqrt((xg(i,j)-d1)**2 + (yg(i,j)-d1)**2 + eps**2) div1i = sqrt((xg(i,j)-d1i)**2 + (yg(i,j)-d1i)**2 + eps**2) div2 = sqrt((xg(i,j)-d2)**2 + (yg(i,j)+d2)**2 + eps**2) div2i = sqrt((xg(i,j)-d2i)**2 + (yg(i,j)+d2i)**2 + eps**2) z(i,j) = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i u(i,j) = -q1*(xx-d1)/div1**3 - q1i*(xx-d1i)/div1i**3 - & q2*(xx-d2)/div2**3 - q2i*(xx-d2i)/div2i**3 v(i,j) = -q1*(yy-d1)/div1**3 - q1i*(yy-d1i)/div1i**3 - & q2*(yy+d2)/div2**3 - q2i*(yy+d2i)/div2i**3 enddo enddo call a2mnmx(xg, nr, ntheta, xmin, xmax, nr) call a2mnmx(yg, nr, ntheta, ymin, ymax, nr) call a2mnmx(z, nr, ntheta, zmin, zmax, nr) call plenv(xmin, xmax, ymin, ymax, 0, 0) call pllab('(x)', '(y)', & '#frPLplot Example 22 - potential gradient vector plot') ! plot contours of the potential dz = abs(zmax - zmin)/real(nlevel,kind=pl_test_flt) do i = 1, nlevel clevel(i) = zmin + (i-0.5_pl_test_flt)*dz enddo call plcol0(3) call pllsty(2) call plcont(z,1,nr,1,ntheta,clevel,xg,yg) call pllsty(1) call plcol0(1) call plcol0(2) scaling = 25.0_pl_test_flt call plvect(u,v,scaling,xg,yg) call plcol0(1) do i=1,nper theta = 2.0_pl_test_flt*PI/real(nper-1,kind=pl_test_flt)*real(i,kind=pl_test_flt) px(i) = rmax*cos(theta) py(i) = rmax*sin(theta) enddo call plline(px,py) end subroutine potential !---------------------------------------------------------------------------- ! Subroutine a2mnmx ! Minimum and the maximum elements of a 2-d array. subroutine a2mnmx(f, nx, ny, fmin, fmax, xdim) integer i, j, nx, ny, xdim real(kind=pl_test_flt) f(xdim, ny), fmin, fmax fmax = f(1, 1) fmin = fmax do j = 1, ny do i = 1, nx fmax = max(fmax, f(i, j)) fmin = min(fmin, f(i, j)) enddo enddo end subroutine a2mnmx end program x22f