// @(#)root/physics:$Id$
// Author: Eric Anciant 28/06/2005
//////////////////////////////////////////////////////////////////////////
//____________________
//
// A Quaternion Class
// Begin_html
//
Quaternion is a 4-component mathematic object quite convenient when dealing with
// space rotation (or reference frame transformation).
//
// In short, think of quaternion Q as a 3-vector augmented by a real number. Q = Q|r + Q|V
//
//
Quaternion multiplication :
//
// Quaternion multiplication is given by :
//
Q.Q' = (Q|r + Q|V )*( Q'|r + Q'|V)
//
= [ Q|r*Q'|r - Q|V*Q'|V ] + [ Q|r*Q'|V + Q'|r*Q|V + Q|V X Q'|V ]
//
//
where :
//
Q|r*Q'|r is a real number product of real numbers
//
Q|V*Q'|V is a real number, scalar product of two 3-vectors
//
Q|r*Q'|V is a 3-vector, scaling of a 3-vector by a real number
//
Q|VXQ'|V is a 3-vector, cross product of two 3-vectors
//
//
Thus, quaternion product is a generalization of real number product and product of a vector by a real number. Product of two pure vectors gives a quaternion whose real part is the opposite of scalar product and the vector part the cross product.
//
//
// The conjugate of a quaternion Q = Q|r + Q|V is Q_bar = Q|r - Q|V
//
// The magnitude of a quaternion Q is given by |Q|² = Q.Q_bar = Q_bar.Q = Q²|r + |Q|V|²
//
// Therefore, the inverse of a quaternion is Q-1 = Q_bar /|Q|²
//
// "unit" quaternion is a quaternion of magnitude 1 : |Q|² = 1.
//
Unit quaternions are a subset of the quaternions set.
//
//
// Quaternion and rotations :
//
//
// A rotation of angle f around a given axis, is represented by a unit quaternion Q :
//
- The axis of the rotation is given by the vector part of Q.
//
- The ratio between the magnitude of the vector part and the real part of Q equals tan(f/2).
//
// In other words : Q = Q|r + Q|V = cos(f/2) + sin(f/2).
//
(where u is a unit vector // to the rotation axis,
// cos(f/2) is the real part, sin(f/2).u is the vector part)
//
Note : The quaternion of identity is QI = cos(0) + sin(0)*(any vector) = 1.
//
// The composition of two rotations is described by the product of the two corresponding quaternions.
//
As for 3-space rotations, quaternion multiplication is not commutative !
//
//
Q = Q1.Q2 represents the composition of the successive rotation R1 and R2 expressed in the current frame (the axis of rotation hold by Q2 is expressed in the frame as it is after R1 rotation).
//
Q = Q2.Q1 represents the composition of the successive rotation R1 and R2 expressed in the initial reference frame.
//
// The inverse of a rotation is a rotation about the same axis but of opposite angle, thus if Q is a unit quaternion,
//
Q = cos(f/2) + sin(f/2).u = Q|r + Q|V, then :
//
Q-1 =cos(-f/2) + sin(-f/2).u = cos(f/2) - sin(f/2).u = Q|r -Q|V is its inverse quaternion.
//
// One verifies that :
//
Q.Q-1 = Q-1.Q = Q|r*Q|r + Q|V*Q|V + Q|r*Q|V -Q|r*Q|V + Q|VXQ|V
//
= Q²|r + Q²|V = 1
//
//
// The rotation of a vector V by the rotation described by a unit quaternion Q is obtained by the following operation : V' = Q*V*Q-1, considering V as a quaternion whose real part is null.
//
// Numeric computation considerations :
//
// Numerically, the quaternion multiplication involves 12 additions and 16 multiplications.
//
It is therefore faster than 3x3 matrixes multiplication involving 18 additions and 27 multiplications.
//
//
On the contrary, rotation of a vector by the above formula ( Q*V*Q-1 ) involves 18 additions and 24 multiplications, whereas multiplication of a 3-vector by a 3x3 matrix involves only 6 additions and 9 multiplications.
//
//
When dealing with numerous composition of space rotation, it is therefore faster to use quaternion product. On the other hand if a huge set of vectors must be rotated by a given quaternion, it is more optimized to convert the quaternion into a rotation matrix once, and then use that later to rotate the set of vectors.
//
// More information :
//
//
//
// en.wikipedia.org/wiki/Quaternions_and_spatial_rotation .
//
//
// en.wikipedia.org/wiki/Quaternion .
//
// _______________________________________________
//
//
This Class represents all quaternions (unit or non-unit)
//
It possesses a Normalize() method to make a given quaternion unit
//
The Rotate(TVector3&) and Rotation(TVector3&) methods can be used even for a non-unit quaternion, in that case, the proper normalization is applied to perform the rotation.
//
//
A TRotation constructor exists than takes a quaternion for parameter (even non-unit), in that cas the proper normalisation is applied.
//
// End_html
#include "TMath.h"
#include "TQuaternion.h"
ClassImp(TQuaternion)
/****************** CONSTRUCTORS ****************************************************/
////////////////////////////////////////////////////////////////////////////////
TQuaternion::TQuaternion(const TQuaternion & q) : TObject(q),
fRealPart(q.fRealPart), fVectorPart(q.fVectorPart) {}
TQuaternion::TQuaternion(const TVector3 & vect, Double_t real)
: fRealPart(real), fVectorPart(vect) {}
TQuaternion::TQuaternion(const Double_t * x0)
: fRealPart(x0[3]), fVectorPart(x0) {}
TQuaternion::TQuaternion(const Float_t * x0)
: fRealPart(x0[3]), fVectorPart(x0) {}
TQuaternion::TQuaternion(Double_t real, Double_t X, Double_t Y, Double_t Z)
: fRealPart(real), fVectorPart(X,Y,Z) {}
TQuaternion::~TQuaternion() {}
////////////////////////////////////////////////////////////////////////////////
///dereferencing operator const
Double_t TQuaternion::operator () (int i) const {
switch(i) {
case 0:
case 1:
case 2:
return fVectorPart(i);
case 3:
return fRealPart;
default:
Error("operator()(i)", "bad index (%d) returning 0",i);
}
return 0.;
}
////////////////////////////////////////////////////////////////////////////////
///dereferencing operator
Double_t & TQuaternion::operator () (int i) {
switch(i) {
case 0:
case 1:
case 2:
return fVectorPart(i);
case 3:
return fRealPart;
default:
Error("operator()(i)", "bad index (%d) returning &fRealPart",i);
}
return fRealPart;
}
////////////////////////////////////////////////////////////////////////////////
/// Get angle of quaternion (rad)
/// N.B : this angle is half of the corresponding rotation angle
Double_t TQuaternion::GetQAngle() const {
if (fRealPart == 0) return TMath::PiOver2();
Double_t denominator = fVectorPart.Mag();
return atan(denominator/fRealPart);
}
////////////////////////////////////////////////////////////////////////////////
/// Set angle of quaternion (rad) - keep quaternion norm
/// N.B : this angle is half of the corresponding rotation angle
TQuaternion& TQuaternion::SetQAngle(Double_t angle) {
Double_t norm = Norm();
Double_t normSinV = fVectorPart.Mag();
if (normSinV != 0) fVectorPart *= (sin(angle)*norm/normSinV);
fRealPart = cos(angle)*norm;
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// set quaternion from vector and angle (rad)
/// quaternion is set as unitary
/// N.B : this angle is half of the corresponding rotation angle
TQuaternion& TQuaternion::SetAxisQAngle(TVector3& v,Double_t QAngle) {
fVectorPart = v;
double norm = v.Mag();
if (norm>0) fVectorPart*=(1./norm);
fVectorPart*=sin(QAngle);
fRealPart = cos(QAngle);
return (*this);
}
/**************** REAL TO QUATERNION ALGEBRA ****************************************/
////////////////////////////////////////////////////////////////////////////////
/// sum of quaternion with a real
TQuaternion TQuaternion::operator+(Double_t real) const {
return TQuaternion(fVectorPart, fRealPart + real);
}
////////////////////////////////////////////////////////////////////////////////
/// substraction of real to quaternion
TQuaternion TQuaternion::operator-(Double_t real) const {
return TQuaternion(fVectorPart, fRealPart - real);
}
////////////////////////////////////////////////////////////////////////////////
/// product of quaternion with a real
TQuaternion TQuaternion::operator*(Double_t real) const {
return TQuaternion(fRealPart*real,fVectorPart.x()*real,fVectorPart.y()*real,fVectorPart.z()*real);
}
////////////////////////////////////////////////////////////////////////////////
/// division by a real
TQuaternion TQuaternion::operator/(Double_t real) const {
if (real !=0 ) {
return TQuaternion(fRealPart/real,fVectorPart.x()/real,fVectorPart.y()/real,fVectorPart.z()/real);
} else {
Error("operator/(Double_t)", "bad value (%f) ignored",real);
}
return (*this);
}
TQuaternion operator + (Double_t r, const TQuaternion & q) { return (q+r); }
TQuaternion operator - (Double_t r, const TQuaternion & q) { return (-q+r); }
TQuaternion operator * (Double_t r, const TQuaternion & q) { return (q*r); }
TQuaternion operator / (Double_t r, const TQuaternion & q) { return (q.Invert()*r); }
/**************** VECTOR TO QUATERNION ALGEBRA ****************************************/
////////////////////////////////////////////////////////////////////////////////
/// sum of quaternion with a real
TQuaternion TQuaternion::operator+(const TVector3 &vect) const {
return TQuaternion(fVectorPart + vect, fRealPart);
}
////////////////////////////////////////////////////////////////////////////////
/// substraction of real to quaternion
TQuaternion TQuaternion::operator-(const TVector3 &vect) const {
return TQuaternion(fVectorPart - vect, fRealPart);
}
////////////////////////////////////////////////////////////////////////////////
/// left multitplication
TQuaternion& TQuaternion::MultiplyLeft(const TVector3 &vect) {
Double_t savedRealPart = fRealPart;
fRealPart = - (fVectorPart * vect);
fVectorPart = vect.Cross(fVectorPart);
fVectorPart += (vect * savedRealPart);
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// right multiplication
TQuaternion& TQuaternion::operator*=(const TVector3 &vect) {
Double_t savedRealPart = fRealPart;
fRealPart = -(fVectorPart * vect);
fVectorPart = fVectorPart.Cross(vect);
fVectorPart += (vect * savedRealPart );
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// left product
TQuaternion TQuaternion::LeftProduct(const TVector3 &vect) const {
return TQuaternion(vect * fRealPart + vect.Cross(fVectorPart), -(fVectorPart * vect));
}
////////////////////////////////////////////////////////////////////////////////
/// right product
TQuaternion TQuaternion::operator*(const TVector3 &vect) const {
return TQuaternion(vect * fRealPart + fVectorPart.Cross(vect), -(fVectorPart * vect));
}
////////////////////////////////////////////////////////////////////////////////
/// left division
TQuaternion& TQuaternion::DivideLeft(const TVector3 &vect) {
Double_t norm2 = vect.Mag2();
MultiplyLeft(vect);
if (norm2 > 0 ) {
// use (1./nom2) to be numericaly compliant with LeftQuotient(const TVector3 &)
(*this) *= -(1./norm2); // minus <- using conjugate of vect
} else {
Error("DivideLeft(const TVector3)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// right division
TQuaternion& TQuaternion::operator/=(const TVector3 &vect) {
Double_t norm2 = vect.Mag2();
(*this) *= vect;
if (norm2 > 0 ) {
// use (1./real) to be numericaly compliant with operator/(const TVector3 &)
(*this) *= - (1./norm2); // minus <- using conjugate of vect
} else {
Error("operator/=(const TVector3 &)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// left quotient
TQuaternion TQuaternion::LeftQuotient(const TVector3 &vect) const {
Double_t norm2 = vect.Mag2();
if (norm2>0) {
double invNorm2 = 1./norm2;
return TQuaternion((vect * -fRealPart - vect.Cross(fVectorPart))*invNorm2,
(fVectorPart * vect ) * invNorm2 );
} else {
Error("LeftQuotient(const TVector3 &)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// right quotient
TQuaternion TQuaternion::operator/(const TVector3 &vect) const {
Double_t norm2 = vect.Mag2();
if (norm2>0) {
double invNorm2 = 1./norm2;
return TQuaternion((vect * -fRealPart - fVectorPart.Cross(vect)) * invNorm2,
(fVectorPart * vect) * invNorm2 );
} else {
Error("operator/(const TVector3 &)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
TQuaternion operator + (const TVector3 &V, const TQuaternion &Q) { return (Q+V); }
TQuaternion operator - (const TVector3 &V, const TQuaternion &Q) { return (-Q+V); }
TQuaternion operator * (const TVector3 &V, const TQuaternion &Q) { return Q.LeftProduct(V); }
TQuaternion operator / (const TVector3 &vect, const TQuaternion &quat) {
//divide operator
TQuaternion res(vect);
res /= quat;
return res;
}
/**************** QUATERNION ALGEBRA ****************************************/
////////////////////////////////////////////////////////////////////////////////
/// right multiplication
TQuaternion& TQuaternion::operator*=(const TQuaternion &quaternion) {
Double_t saveRP = fRealPart;
TVector3 cross(fVectorPart.Cross(quaternion.fVectorPart));
fRealPart = fRealPart * quaternion.fRealPart - fVectorPart * quaternion.fVectorPart;
fVectorPart *= quaternion.fRealPart;
fVectorPart += quaternion.fVectorPart * saveRP;
fVectorPart += cross;
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// left multiplication
TQuaternion& TQuaternion::MultiplyLeft(const TQuaternion &quaternion) {
Double_t saveRP = fRealPart;
TVector3 cross(quaternion.fVectorPart.Cross(fVectorPart));
fRealPart = fRealPart * quaternion.fRealPart - fVectorPart * quaternion.fVectorPart;
fVectorPart *= quaternion.fRealPart;
fVectorPart += quaternion.fVectorPart * saveRP;
fVectorPart += cross;
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// left product
TQuaternion TQuaternion::LeftProduct(const TQuaternion &quaternion) const {
return TQuaternion( fVectorPart*quaternion.fRealPart + quaternion.fVectorPart*fRealPart
+ quaternion.fVectorPart.Cross(fVectorPart),
fRealPart*quaternion.fRealPart - fVectorPart*quaternion.fVectorPart );
}
////////////////////////////////////////////////////////////////////////////////
/// right product
TQuaternion TQuaternion::operator*(const TQuaternion &quaternion) const {
return TQuaternion(fVectorPart*quaternion.fRealPart + quaternion.fVectorPart*fRealPart
+ fVectorPart.Cross(quaternion.fVectorPart),
fRealPart*quaternion.fRealPart - fVectorPart*quaternion.fVectorPart );
}
////////////////////////////////////////////////////////////////////////////////
/// left division
TQuaternion& TQuaternion::DivideLeft(const TQuaternion &quaternion) {
Double_t norm2 = quaternion.Norm2();
if (norm2 > 0 ) {
MultiplyLeft(quaternion.Conjugate());
(*this) *= (1./norm2);
} else {
Error("DivideLeft(const TQuaternion &)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// right division
TQuaternion& TQuaternion::operator/=(const TQuaternion& quaternion) {
Double_t norm2 = quaternion.Norm2();
if (norm2 > 0 ) {
(*this) *= quaternion.Conjugate();
// use (1./norm2) top be numericaly compliant with operator/(const TQuaternion&)
(*this) *= (1./norm2);
} else {
Error("operator/=(const TQuaternion&)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// left quotient
TQuaternion TQuaternion::LeftQuotient(const TQuaternion& quaternion) const {
Double_t norm2 = quaternion.Norm2();
if (norm2 > 0 ) {
double invNorm2 = 1./norm2;
return TQuaternion(
(fVectorPart*quaternion.fRealPart - quaternion.fVectorPart*fRealPart
- quaternion.fVectorPart.Cross(fVectorPart)) * invNorm2,
(fRealPart*quaternion.fRealPart + fVectorPart*quaternion.fVectorPart)*invNorm2 );
} else {
Error("LeftQuotient(const TQuaternion&)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// right quotient
TQuaternion TQuaternion::operator/(const TQuaternion &quaternion) const {
Double_t norm2 = quaternion.Norm2();
if (norm2 > 0 ) {
double invNorm2 = 1./norm2;
return TQuaternion(
(fVectorPart*quaternion.fRealPart - quaternion.fVectorPart*fRealPart
- fVectorPart.Cross(quaternion.fVectorPart)) * invNorm2,
(fRealPart*quaternion.fRealPart + fVectorPart*quaternion.fVectorPart) * invNorm2 );
} else {
Error("operator/(const TQuaternion &)", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// invert
TQuaternion TQuaternion::Invert() const {
double norm2 = Norm2();
if (norm2 > 0 ) {
double invNorm2 = 1./norm2;
return TQuaternion(fVectorPart*(-invNorm2), fRealPart*invNorm2 );
} else {
Error("Invert()", "bad norm2 (%f) ignored",norm2);
}
return (*this);
}
////////////////////////////////////////////////////////////////////////////////
/// rotate vect by current quaternion
void TQuaternion::Rotate(TVector3 & vect) const {
vect = Rotation(vect);
}
////////////////////////////////////////////////////////////////////////////////
/// rotation of vect by current quaternion
TVector3 TQuaternion::Rotation(const TVector3 & vect) const {
// Vres = (*this) * vect * (this->Invert());
double norm2 = Norm2();
if (norm2>0) {
TQuaternion quat(*this);
quat *= vect;
// only compute vect part : (real part has to be 0 ) :
// VECT [ quat * ( this->Conjugate() ) ] = quat.fRealPart * -this->fVectorPart
// + this->fRealPart * quat.fVectorPart
// + quat.fVectorPart X (-this->fVectorPart)
TVector3 cross(fVectorPart.Cross(quat.fVectorPart));
quat.fVectorPart *= fRealPart;
quat.fVectorPart -= fVectorPart * quat.fRealPart;
quat.fVectorPart += cross;
return quat.fVectorPart*(1./norm2);
} else {
Error("Rotation()", "bad norm2 (%f) ignored",norm2);
}
return vect;
}
////////////////////////////////////////////////////////////////////////////////
///Print Quaternion parameters
void TQuaternion::Print(Option_t*) const
{
Printf("%s %s (r,x,y,z)=(%f,%f,%f,%f) \n (alpha,rho,theta,phi)=(%f,%f,%f,%f)",GetName(),GetTitle(),
fRealPart,fVectorPart.X(),fVectorPart.Y(),fVectorPart.Z(),
GetQAngle()*TMath::RadToDeg(),fVectorPart.Mag(),fVectorPart.Theta()*TMath::RadToDeg(),fVectorPart.Phi()*TMath::RadToDeg());
}