import numpy as np import xraylib_np as xrl_np import matplotlib.pyplot as plt from matplotlib import gridspec Z = np.arange(3, 99) yields_bad = xrl_np.FluorYield(Z, np.array([xrl_np.K_SHELL])).squeeze() yields_good = [] with open('fluor_yield_revised.dat', 'r') as file: for line in file: [myZ, y] = line.split() yields_good.append(y) yields_good = np.asarray(yields_good, dtype=np.float64) fig = plt.figure(figsize=(7, 10)) gs = gridspec.GridSpec(3, 1, height_ratios=[3, 1, 1]) ax = fig.add_subplot(gs[0]) ax.set_xlabel('Atomic number') ax.set_ylabel('Fluorescence yield') plot_bad, = ax.plot(Z, yields_bad, color='r', marker='o', label='Fitted Hubbell') plot_good, = ax.plot(Z, yields_good[0:Z.shape[0]], color='g', marker='o', label='Recommended Hubbell') ax.legend(handles=[plot_bad, plot_good], loc=4) ax = fig.add_subplot(gs[1]) ax.set_ylabel('Absolute diff') ax.plot(Z, (yields_good[0:Z.shape[0]] - yields_bad), color='b', marker='o') ax = fig.add_subplot(gs[2]) ax.set_ylabel('Relative diff') ax.plot(Z, (yields_good[0:Z.shape[0]] - yields_bad) / yields_good[0:Z.shape[0]], color='b', marker='o') plt.draw() plt.savefig('yield-comparison.png') plt.close()