/* Copyright (c) 2009, Bruno Golosio, Antonio Brunetti, Manuel Sanchez del Rio, Tom Schoonjans and Teemu Ikonen All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY Bruno Golosio, Antonio Brunetti, Manuel Sanchez del Rio, Tom Schoonjans and Teemu Ikonen ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Bruno Golosio, Antonio Brunetti, Manuel Sanchez del Rio, Tom Schoonjans and Teemu Ikonen BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include #include #include "splint.h" #include "xrayglob.h" #include "xraylib.h" #include "xraylib-error-private.h" /*//////////////////////////////////////////////////////////////////// // // // Atomic form factor for Rayleigh scattering // // // // Z : atomic number // // q : momentum transfer // // // /////////////////////////////////////////////////////////////////// */ double FF_Rayl(int Z, double q, xrl_error **error) { double FF; int splint_rv; if (Z < 1 || Z > ZMAX || Nq_Rayl[Z] <= 0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, Z_OUT_OF_RANGE); return 0; } if (q == 0) return Z; if (q < 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_Q); return 0; } splint_rv = splint(q_Rayl_arr[Z]-1, FF_Rayl_arr[Z]-1, FF_Rayl_arr2[Z]-1, Nq_Rayl[Z], q, &FF, error); if (!splint_rv) return 0.0; return FF; } /*//////////////////////////////////////////////////////////////////// // // // Incoherent scattering function for Compton scattering // // // // Z : atomic number // // q : momentum transfer // // // /////////////////////////////////////////////////////////////////// */ double SF_Compt(int Z, double q, xrl_error **error) { double SF; int splint_rv; if (Z < 1 || Z > ZMAX || Nq_Compt[Z] <= 0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, Z_OUT_OF_RANGE); return 0; } if (q <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_Q); return 0; } splint_rv = splint(q_Compt_arr[Z]-1, SF_Compt_arr[Z]-1, SF_Compt_arr2[Z]-1, Nq_Compt[Z], q, &SF, error); if (!splint_rv) return 0.0; return SF; } /*//////////////////////////////////////////////////////////////////// // // // Thomson differential scattering cross section (barn) // // // // theta : scattering polar angle (rad) // // // /////////////////////////////////////////////////////////////////// */ double DCS_Thoms(double theta, xrl_error **error) { double cos_theta; cos_theta = cos(theta); return (RE2/2.0) * (1.0 + cos_theta*cos_theta); } /*//////////////////////////////////////////////////////////////////// // // // Klein-Nishina differential scattering cross section (barn) // // // // E : Energy (keV) // // theta : scattering polar angle (rad) // // // /////////////////////////////////////////////////////////////////// */ double DCS_KN(double E, double theta, xrl_error **error) { double cos_theta, t1, t2; if (E <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0; } cos_theta = cos(theta); t1 = (1.0 - cos_theta) * E / MEC2 ; t2 = 1.0 + t1; return (RE2/2.) * (1.0 + cos_theta*cos_theta + t1*t1/t2) /t2 /t2; } /*//////////////////////////////////////////////////////////////////// // // // Differential Rayleigh scattering cross section (cm2/g/sterad) // // // // Z : atomic number // // E : Energy (keV) // // theta : scattering polar angle (rad) // // // /////////////////////////////////////////////////////////////////// */ double DCS_Rayl(int Z, double E, double theta, xrl_error **error) { double F, q; xrl_error *tmp_error = NULL; if (Z < 1 || Z > ZMAX) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, Z_OUT_OF_RANGE); return 0; } if (E <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0; } q = MomentTransf(E, theta, NULL); F = FF_Rayl(Z, q, &tmp_error); if (tmp_error != NULL) { xrl_propagate_error(error, tmp_error); return 0.0; } return AVOGNUM / AtomicWeight(Z, error) * F * F * DCS_Thoms(theta, error); } /*//////////////////////////////////////////////////////////////////// // // // Differential Compton scattering cross section (cm2/g/sterad) // // // // Z : atomic number // // E : Energy (keV) // // theta : scattering polar angle (rad) // // // /////////////////////////////////////////////////////////////////// */ double DCS_Compt(int Z, double E, double theta, xrl_error **error) { double S, q; xrl_error *tmp_error = NULL; if (Z<1 || Z>ZMAX) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, Z_OUT_OF_RANGE); return 0; } if (E <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0; } q = MomentTransf(E, theta, NULL); S = SF_Compt(Z, q, &tmp_error); if (tmp_error != NULL) { xrl_propagate_error(error, tmp_error); return 0.0; } return AVOGNUM / AtomicWeight(Z, error) * S * DCS_KN(E, theta, error); } /*//////////////////////////////////////////////////////////////////// // // // Momentum transfer for X-ray photon scattering (angstrom-1) // // // // E : Energy (keV) // // theta : scattering polar angle (rad) // // // /////////////////////////////////////////////////////////////////// */ double MomentTransf(double E, double theta, xrl_error **error) { if (E <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0; } return E / KEV2ANGST * sin(theta / 2.0) ; } /*//////////////////////////////////////////////////////////////////// // // // Total klein-Nishina cross section (barn) // // // // E : Energy (keV) // // // /////////////////////////////////////////////////////////////////// */ double CS_KN(double E, xrl_error **error) { double a, a3, b, b2, lb; double sigma; if (E <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0; } a = E / MEC2; a3 = a*a*a; b = 1 + 2*a; b2 = b*b; lb = log(b); sigma = 2*PI*RE2*( (1+a)/a3*(2*a*(1+a)/b-lb) + 0.5*lb/a - (1+3*a)/b2); return sigma; } /*//////////////////////////////////////////////////////////////////// // // // Photon energy after Compton scattering (keV) // // // // E0 : Photon Energy before scattering (keV) // // theta : scattering polar angle (rad) // // // /////////////////////////////////////////////////////////////////// */ double ComptonEnergy(double E0, double theta, xrl_error **error) { double cos_theta, alpha; if (E0 <= 0.) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0; } cos_theta = cos(theta); alpha = E0 / MEC2; return E0 / (1 + alpha*(1 - cos_theta)); }