

User’s manual

MOGA dynamic aperture optimization tool

Version 1.0

April, 2016

Tool programmed by M. Ehrlichman

Manual written by M. Aiba

1. Introduction

 A dynamic aperture optimisation tool is developed by M. Ehrlichman for SLS2 upgrade project.

It has been successfully applied to the SLS2 lattice under development. This manual includes the

following sections:

Section 2 - how the tool works such that users may have an idea for the parameters in the input

files

Section 3 – description of the input files

Section 4 - how to use the tool particularly in Merlin cluster at PSI

Section 5 - how to extract the optimisation result (output files)

2. How it works

 Optimization of dynamic aperture is simply a multi-variable optimisation from mathematical

point of view. The knobs to be optimised are mainly the sextupole moments in the lattice.

Higher order moments may be included if found in the lattice.

 Multi objective genetic algorithm (MOGA) is employed for the optimization, which is

implemented in PISA framework (actual version is aPISA). For ranking the population in MOGA,

PISA utilises a separate routine, namely SPEA2 in this tool.

 The optimisation requires particle tracking to evaluate the dynamic aperture. It is performed by

using bmad code, and the lattice to be optimised is therefore defined in the bmad format.

The objectives are the on-momentum and off-momentum dynamic apertures, and the

momentum deviation for the off-momentum aperture can be specified by user.

 Furthermore, several constraints can be set by user in order to obtain “reasonable” result: the

parameters to be constrained are the horizontal and vertical chromaticity and their higher order

terms (chromatic tune footprint), higher order dispersion and sextupole and (if used as knob)

higher order multipole strengths. These constraint values are also computed with bmad.

 For more details of the tool, see E. Ehrlichman, “A Genetic Algorithm for Chromaticity

correction in Diffraction Limited Storage Rings.”, PRAB, to be published, and the references

therein.

3. Input files

a. Main input file (common.in)

 The main input file contains the parameter groups, general, da (dynamic aperture), moga for

performing the optimisation. Also there are the groups, fp (footprint), touschek, adts (amplitude

dependent tune shift), da_raster and evaluator for post processing. The file is prepared in the

following format (the descriptions after ! character are comments):

&general

 lat_file = 'dc01a.bmad' ! Lattice file in bmad format

 use_hybrid = .true. ! Concatinate the linear elements between non-linear elements

 periodicity = 3 ! Super periodicity of the lattice

 use_line = 'per' ! Beam line used for DA computation, defined in the bmad lattice file

 /

 &da

 tracking_method = 1 ! Standard bmad tracking algorithm (see bmad manual)

 n_turn = 200 ! The number of turns to be tracked to evaluate dynamic aperture

 n_adts = 200 ! The number of turns to be tracked to evaluate adts. (-1 to disable)

 n_angle = 7 ! The number of directions of DA search in x-y plane

 dE(1) = 0.0 ! Energy deviation for DA evaluation

 dE(2) = -0.03

 dE(3) = 0.03

 track_dims = 4 ! Tracking dimension

 init_len = 0.002 ! Initial step for DA search

 adts_x_min = 37.0 ! Constraint for the amplitude dependent tune shift

 adts_x_max = 37.5

 adts_y_min = 10.0

 adts_y_max = 10.5

 /

 &moga

 generate_feasible_seeds_only = -1 ! -1 to disable. If 1. Simulator stops when population is

feasible.

 moga_output_file = 'moga_results.out' ! Output filename containing the optimization result

 initial_pop = 'random' ! The last generation of the above output can be in here to continue.

 seed = 4,5 ! Random seed for MOGA optimisation (Fortran routine used requires 2 seeds…)

 max_gen = 900 ! Maximum generations for MOGA optimisation

 set_chrom_x = 0.0 ! Set chromaticity

 set_chrom_y = 0.0

 !breeder parameters !

 breeder_params%cross_p = 0.8 ! Pc in Ehrlichman’s paper

 breeder_params%mutate_p = 0.0435 ! Pm (1/Number_of_knobs typically)

 breeder_params%eta = 0.8 ! kappa=1/(1+eta)

 !constraints

 linear_vec_cutoff = 0.0020 ! LA smaller than this is perfectly bad objective value.

 co_limit = 0.0040 ! Constraint for the off energy closed orbit

 fp_dE_neg = -0.05 ! Negative momentum boundary for constraining chromatic tune shift

 fp_dE_pos = 0.05 ! Positive momentum boundary for constraining chromatic tune shift

 n_fp_steps = 20 ! Number of points to compute chromatic tune shift

 x_fp_min = 37.0 ! Constraint boundary for chromatic tune shift

 x_fp_max = 37.5

 y_fp_min = 10.0

 y_fp_max = 10.5

 !variables

 ! Varialbles (Knobs) in MOGA : ‘c’ for sextupole in dispersive section, ‘h’ for harmonic sext

 ! type name l cons u cons l init u init mutate width

 mags_in(1) = 'c', 'sd', -1000.0, 1000.0, -1000.0, 1000.0, 300.0

 …

 …

 mags_in(23) = 'h', 'oxx_l', -3000.0, 3000.0, -3000.0, 3000.0, 600.0

 /

 &fp ! Parameters to compute chromatic tune sshift for post processing

 pz_min = -0.05

 pz_max = 0.05

 n_pz = 31

 /

 &touschek ! For post processing to check if Touschek lifetime after the optimisation

 tracking_method = 1 ! bmad standard method

 rf_bucket = 0.05 ! Assumed bucket height for 4D tracking

 n_turn = 100 ! The number of turns to evaluate Toushcek lifetime

 dims = 4 ! 4D or 6D

 current = 0.001 ! Beam current (A)

 bunch_length = 0.00261 ! Bunch length (m)

 horizontal_emittance = -1 ! Horizontal emittance (-1 = computed from lattice)

 vertical_emittance = 10.0e-12 ! Vertical emittance (with coupling assumed)

 stepping = 'by_n_steps' ! by_ix, by_n_steps or by_file

 n_ma_locs = 1000 ! Number of steps

 /

 &adts ! Parameters to compute amplitude dependent tune shift for post processing

 use_bounds_file = .true. ! Get ADTS in x and y from DA program

 x_min = -0.01

 x_max = 0.01

 y_min = 0.00

 y_max = 0.01

 n_steps = 60

 /

 &da_raster ! Parameters to visualise the dynamic aperture for post processing, “survival plot”

 x_min = -0.003

 x_max = 0.003

 y_min = 0.0

 y_max = 0.01

 nx = 51

 ny = 25

 calc_tunes = 'no'

 linear_bounds_file = '../00da_linear/linear_boundary.dat'

 /

 &evaluator ! Switches for post processing (read by dynap_pisa_evaluator.py)

 makeLats = .true.

 plotOnly = .false.

 doNDP = .false.

 doLA = .true.

 doDA = .true.

 doRA = .false.

 doTL = .false.

 doFP = .true.

 doADTS = .true.

 /

b. Lattice file

 Lattice file is described in the bmad format. OPA is capable to output it. However, the aperture

parameters have to be added to OPA output (if not included) for the MOGA optimisation since

the objectives (dynamic aperture) is evaluated with respect to the linear aperture.

*[aperture_type]=elliptical

*[aperture]=0.01

 Also rf setting to get stable 6*6 matrix is required even when the tracking for the dynamic

aperture optimisation is in transverse only. This could be avoided by a dedicated coding (in

bmad?) but adding an rf cavity to the lattice file is easy fix.

rfcav: rfcavity, voltage = -1.41 * 1e6, harmon = 480, l = 0.0 ! 500 MHz RF, 5% bucket

 Step size for tracking and fringe field type also added to perform reasonable tracking.

sbend[ds_step] = 0.001

sbend[fringe_type] = linear_edge

 See the example file described in Section 4 for more details.

c. PISA parameter file

initial_population_size 300

parent_set_size 150

offspring_set_size 150

objectives 3

constraints 5

 initial_population_size is the number of population in the first generation, which is actually

constant in the later generations. parent_set_size is the number of individuals to be left for the

next generation, and offspring_set_size is the number of new individuals in the next generation.

These should be half of initial_population_size. objective is the number of objectives (3 is for the

dynamic apertures for the nominal momentum, positive and negative momentum offsets).

contraints is the number of constraints, which should be always 5 unless the code is expanded to

include more constraints.

d. SPEA2 parameter file

 There are four parameters to be given for SPEA2 ranking algorithm.

seed 10

tournament 4

k_neighbor SQRT

verbose YES

 seed is the random seed for ranking process. tournament is the number of random numbers to

be drawn. k_neighbor specifies how to compute the distance between two individuals. If

verbose is YES, spea2_diag.log file is output, reporting the number of good individuals at each

generation.

4. How to run in Merlin cluster

 First of all, it is obvious that you need an account on merlin cluster to use the tool.

Merlin cluster is dedicated for time-consuming computations, and it is mandatory to login to the

login cluster, merlinl01.psi.ch and not to the computation node.

 To get started, copy the example situated in the slsbd project directory by typing

> cp -r /afs/psi.ch/project/slsbd/public/MOGA/Example/ Example

and

> cd Example

In that directory, all the necessary input files are contained.

 Then, to start MOGA optimisation on the lattice in Example directory (da01a.bmad), type

> qsub sge.dynap_pisa

 The optimisation job is terminated after ~24 hours and if necessary, continue next day with the

last generation. The last generation should be extracted from moga_resuts.out to a file. The

filename containing the last generation needs to be put into the main input file (common.in).

5. Output files and post processing

 During or after MOGA optimisation, one can see the progress by taking a look at the file

spea2_diag.log. An example of this file is:

…

…

(12.03.2016 08:17:39) spea2: #423 1st front size (118)

(12.03.2016 08:19:40) spea2: #424 1st front size (118)

(12.03.2016 08:23:25) spea2: #425 1st front size (105)

(12.03.2016 08:27:00) spea2: #426 1st front size (97)

(12.03.2016 08:30:12) spea2: #427 1st front size (99)

(12.03.2016 08:33:28) spea2: #428 1st front size (101)

(12.03.2016 08:37:00) spea2: #429 1st front size (102)

(12.03.2016 08:39:45) spea2: #430 1st front size (103)

(12.03.2016 08:42:45) spea2: #431 1st front size (104)

(12.03.2016 08:46:27) spea2: #432 1st front size (107)

(12.03.2016 08:50:05) spea2: #433 1st front size (111)

(12.03.2016 08:54:03) spea2: #434 1st front size (113)

(12.03.2016 08:57:53) spea2: #435 1st front size (116)

(12.03.2016 09:01:09) spea2: #436 1st front size (118)

#423 etc. are the number of generations and the 1st front size(118) is the number of individuals

that are not dominated by any other individual. It is seen that the front sizes decreases at 426th

generation. This indicates that a superior individual is spawn and the Pareto front is pushed

towards. When the front size steadily approaches the population size, it is an indication that the

optimisation is converging.

 The optimisation job can be cancelled whenever necessary (any mistake found or it has

converged)

> qdel <job_ID>

 Job_ID can be found by

> qstat

To perform post processing, go to the directory Example/report/ and type

> /afs/psi.ch/project/slsbd/public/MOGA/ebin/moga_objs.py

 Then a matplotlib window pops up

 The horizontal axis represents the three energy offsets, that is, 1 = the nominal energy. 2 =

negative energy offset and 3 = positive energy offset. The vertical axis corresponds to the

dynamic aperture for these energy offsets. N.B. the smaller objective value is the better dynamic

aperture. In the above window, one can exclude relatively bad individuals by bringing the mouse

pointer close to the line to be excluded and click right button. After the selection, it will be like

the next figure.

 Then, by hitting ‘w’ key, moga_picked.dat file is created that contains only the individuals left.

They are to be examined in the next step.

 Next step is to evaluate or visualise various properties of the individuals (post processing) such

as the dynamic apertures and amplitude dependent tune shifts:

> qsub sge.dynap_pisa_evaluator

 in Example/report directory.

 The results of the post processing are stored in automatically generated directories for each

individual. It is noted that the post processing may take long time if many individual are

examined and/or Touschek lifetime evaluation is included.

 A couple of figures created by the post processing are shown below:

Dynamic aperture output (set doDA = .true. in common.in)

Dynamic aperture output (set doFP = .true. in common.in)

The objectives and the variables are also visualized by:

> gnuplot /afs/psi.ch/project/slsbd/public/MOGA/ebin/moga_objs.gp

> gnuplot /afs/psi.ch/project/slsbd/public/MOGA/ebin/moga_var.gp

in /Example/report directory.

These gnuplot scripts generate report_objs.eps and report_vars.eps.

A full set of analysis files is found in:

/gpfs/home/ehrlichman_m/SLS2/dynap_pisa/dc01a/pisa_1_cont/report/seed_20520

