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An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is
needed for a number of applications. These include simulations of electron cloud effects and the design of
radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the
scattering of the radiation at the vacuum chamber walls. To this end, a program called Synrad3D has been
developed which simulates the production and propagation of synchrotron radiation using a collection of
photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum
chamber wall where the photon is either absorbed or scattered. Both specular and diffuse scattering is
simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is
finally absorbed. This paper describes the Synrad3D program, with a focus on the details of its scattering
model, and presents some examples of the program’s use.
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I. INTRODUCTION

Calculation of the synchrotron radiation flux within an
accelerator vacuum chamber is important for a number of
applications. For example, the electron cloud effect [1-6]
has been a major performance-limiting issue for many
accelerators in the past, and will need to be mitigated in
future accelerators. In lepton accelerators and very-high-
energy hadron accelerators, the cloud is seeded by photo-
electrons, which are generated by synchrotron radiation.
Understanding the evolution of the electron cloud and its
effect on the beam requires a detailed understanding of
where the photoelectrons are created. This is true since
electrons will tend to follow the local magnetic field lines.
Thus an electron produced at the top or bottom of the
vacuum chamber in a bend with a vertical magnetic field
will behave quite differently than an electron produced
horizontally to the side. Since photoelectrons are created
where photons of the requisite energy are absorbed, the
photon absorption distribution has a profound effect on the
electron cloud.

Simulation of synchrotron radiation is also needed in the
design of radiation masking systems [7] to protect sensitive
areas of the machine from the radiation flux. Additionally,
vacuum pumping of exposed chamber surfaces is affected by
the distribution of synchrotron radiation.

To properly simulate the effects of synchrotron radiation,
it is important to include the scattering of the radiation at the
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vacuum chamber walls. Areas that do not have any direct
radiation shining on them may still see a significant flux due
to scattering. To this end, a program called Synrad3D [8] has
been developed which simulates synchrotron radiation by
tracking photons generated by a charged particle beam from
birth through scattering—both specular and diffuse—in
multiple wall encounters, to eventual absorption.

In Sec. II and Sec. III below, this paper describes the
Synrad3D program and its scattering model. In Sec. IV, the
results of benchmarking the model against data are pre-
sented. Several examples of Synrad3D photon production,
transport and absorption simulations, in which diffuse
scattering is included in the simulation, are given in
Sec. V. After the summary in Sec. VI, a detailed discussion
of the derivation of the scattering model equations, and how
they are used in Synrad3D, is presented in the Appendix.

II. SYNRAD3D

As part of the research for the CesrTA test accelerator [9],
the Synrad3D [8,10] program has been developed to track
synchrotron radiation photons generated in storage rings
and linacs. Synrad3D is based upon the Bmad software library
[11]. Bmad is a toolkit for the simulation of charged particle
as well as X-ray beams. Associated with Bmad are a number
of programs used for lattice design and analysis, intrabeam
scattering calculations, spin tracking, etc. Synrad3D, as well
as Bmad, is open source and can be downloaded from the
web as part of the Bmad distribution package [12].

The motivation for developing Synrad3D was to estimate
the energy and position distribution of photons absorbed
on the vacuum chamber walls, which are critical inputs to
codes which model the growth of electron clouds. Synrad3D
includes both specular and diffuse scattering from the
walls. For the scattering calculation, Synrad3D takes as input
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the specular photon reflection probability as a function of
angle and photon energy for a smooth surface. Using this,
along with input values for the rms surface roughness and
transverse correlation length, Synrad3D calculates the diffuse
and specular scattering probabilities for the rough surface
using an analytical model derived from Beckmann [13,14].

The smooth-surface photon reflectivity which Synrad3D
uses as the basis for the scattering calculation is dependent
upon the material properties of the surface. Different
smooth-surface reflectivities can be assigned to different
parts of the vacuum chamber. If not specified by the user,
the default smooth-surface reflectivity model used is that
for an aluminum chamber with a 10 nm carbon film on the
surface. This smooth-surface reflectivity model is illus-
trated in Fig. 1. The data for this model was obtained from a
Lawrence Berkeley National Laboratory (LBNL) x-ray
scattering database [15].

Synrad3D can handle machines where the geometry is not
planar and can handle intersecting beam lines. For example,
Synrad3D can handle the geometry created by x-ray beam
lines connected to a storage ring. Additionally, Synrad3D can
handle a wide variety of vacuum chamber profiles.

The vacuum chamber wall is defined in Synrad3D by the
union of a number of “subchambers” as shown in Fig. 2. A
photon is considered within the vacuum chamber if, and
only if, it is inside at least one of the subchambers. Each
subchamber is defined by a number of cross sections, as
shown in Fig. 3, and each cross section is defined by a
number of vertices. A straight line or the arc of an ellipse
can be used to connect the vertices. The one restriction on
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FIG. 1. Smooth surface photon reflectivity R for a 10 nm C film
on Al substrate [15].

FIG. 2. The vacuum chamber is the union of a number
of subchambers. This figure illustrates this showing two
subchambers—one colored green and the other colored red.
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FIG. 3. A subchamber is defined by a number of cross-sectional
slices. (A) A subchamber (red) and two cross-sectional slices
(blue). (B) A given cross section is defined by a number of vertices.
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subchamber construction is that the volume between
adjacent cross sections should be convex. By imposing
this restriction, Synrad3D can efficiently track photons.

Synrad3D uses Monte Carlo techniques to generate simu-
lated photons based on the standard synchrotron radiation
formulas for charged beam particles traversing dipoles,
quadrupoles and wigglers, in the lattice of an accelerator.

Photons are generated with respect to the particle beam’s
actual orbit (which may differ from the zero orbit), so the
effect of variations in the orbit can be studied. The particle
beam size is also taken into account when generating the
photon starting positions. The emittance needed to calculate
the beam size can be supplied by the user or is calculated
from the standard synchrotron radiation formulas.

III. SCATTERING MODEL

Generally, the probability of specular reflection of a
photon from a rough surface depends on the rms surface
roughness o, the photon wavelength 4, the incident and
scattering angles, and the atomic properties of the surface.
An explicit formula for this probability is (see Beckmann
[13], or Eq. (A78) in the Appendix)

Pspec = Re™, (1)
in which

4r*c*(x +y)?

x is the cosine of the incident polar angle, and y is the
cosine of the scattered polar angle. The atomic properties of
the surface are reflected in the smooth-surface photon
reflectivity R.

For a typical technical vacuum chamber surface, the rms
surface roughness o ~ 200 nm is greater than most of the
x-ray wavelengths of interest. In this regime, except at very
small grazing angles, diffuse scattering from the surface
dominates over specular reflection. This is illustrated in
Fig. 4, which is based on Eq. (1), but with R = 1.

The theory of diffuse scattering of electromagnetic
waves from random rough surfaces is a well-developed
subject, and is covered in detail in Beckmann [13] and
Ogilvy [14]. The approach is based on Kirchhoff (scalar)
diffraction theory; this approach has been used successfully
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FIG. 4. Specular reflection probability [13], vs. photon energy
and angle, for an rms surface roughness of ¢ = 200 nm. The
curves have been calculated from Eq. (1) with R = 1.

to describe the scattering of soft x-rays from metal surfaces
[16,17]. In Synrad3D, we assume a Gaussian form for both
the surface height distribution (rms ¢) and for the transverse
autocorrelation (the same in both transverse directions, with
autocorrelation coefficient 7).

The most general expression for the diffusely scattered
power involves an infinite sum [see Eq. (A97)]. This full
expression is used in Synrad3D. However, the expression
simplifies substantially in the limit g > 1. This condition is
satisfied (except for very small grazing angles) for rough
surfaces, corresponding to technical vacuum chambers, and
for high energy photons, for which typically ¢ > A. In this
limit, the average diffusely scattered power per unit solid
angle is given by [see Eq. (A111)]

2 _ 2 2(-x2—y22mp)
Ao\ _ p R (4 xy )" =805 )
04ﬂy '

dQ, (x+y)*

in which
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FIG. 5. Diffuse scattering polar angular distributions for 30 eV

photons, 6 = 200 nm and 7 = 5500 nm. The full diffuse scatter-
ing expression [Eq. (A97)] has been used to calculate these
curves.
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FIG. 6. Diffuse scattering out-of-plane angular distributions for
30 eV photons, ¢ = 200 nm and 7 = 5500 nm. The full diffuse
scattering expression [Eq. (A97)] has been used to calculate these
curves.

h=V1-x*/1-y (4)

¢ = cos . (5)

In this expression, P, is the incident power, R is the
smooth-surface photon reflectivity, and ¢ is the scattering
angle out of the plane of incidence. Note that the scattered
power depends on the ratio 7 = T/o, and not on T or ¢
separately, and, in the ¢g>> 1 limit, the distribution is
independent of photon wavelength.

The smooth-surface photon reflectivity R depends on the
atomic structure of the surface materials (including any thin
layers which may be deposited on the surface). The surface
roughness parameters o and 7" depend on the geometry of
the surface deviations from a perfect plane. These param-
eters may be determined from inspection of the vacuum
chamber surface, for example, using an atomic force
microscope.
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FIG. 7. Diffuse scattering polar angular distributions for high
energy photons, 6 = 200 nm and 7 = 5500 nm. The curves are
calculated from the approximate relation given in Eq. (3). In this
case, high-energy photons correspond to 1 < o, i.e., E > 6 eV.
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FIG. 8. Diffuse scattering out-of-plane angular distributions

for high energy photons, ¢ = 200 nm and 7 = 5500 nm. The

curves are calculated from the approximate relation given in

Eq. (3). In this case, high-energy photons correspond to 1 < o,

ie., E>6¢eV.

For 6 =200 nm and 7 = 5500 nm, which are the
default values used by Synrad3D, diffuse scattering distribu-
tions for 30 eV photons are shown in Fig. 5 and Fig. 6. At
this low photon energy, the approximation g > 1 does not
hold in general, and the full diffuse scattering formalism
[Eq. (A97)] is used to compute these distributions. Diffuse
scattering distributions for high energy photons, for which
g> 1 are shown in Fig. 7 and Fig. 8. These distributions
have been computed from Eq. (3).

IV. BENCHMARKING
A. DAPNE benchmarking

To benchmark the scattering model for a typical vacuum
chamber surface, we have relied on measurements [18] of
x-ray scattering from an aluminum vacuum chamber sur-
face made at DAPNE. For these measurements, the rms
surface roughness of the sample was reported to be 200 nm.
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FIG. 9. Comparison of data [18] and model for diffuse
scattering at 5° from a rough (¢ = 200 nm) surface layer on
an aluminum substrate.
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FIG. 10. Comparison of data [18] and model for diffuse
scattering at 45° from a rough (¢ = 200 nm) surface layer on
an aluminum substrate.

The theory of diffuse scattering discussed above has
been used, together with smooth surface reflectivity results
taken from an x-ray database [15], to predict the scattering
and compare with the measurements. From these compar-
isons, the best-fit value for the transverse autocorrelation
parameter, 7', was found to be 5500 nm. As discussed by
Dugan and Sagan [19], it was found that the smooth-
surface reflectivity corresponding to a 10 nm carbon film
on an aluminum substrate was needed to fit the data
[The presence of a carbon (or carbon monoxide) film on
technical vacuum chamber surfaces is a well-known phe-
nomenon]. The assumption of an aluminum oxide surface
film was not consistent with the data. The data and the
corresponding fits are shown in Fig. 9,10, and 11.

B. Benchmarking with other x-ray
scattering measurements

Additional comparisons of this theory with measure-
ments have been reported in [20]. In that paper, the general
outline of the theory is given, but the paper lacks a detailed
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FIG. 11. Comparison of data [18] and model for diffuse

scattering at 85° from a rough (¢ = 200 nm) surface layer on
an aluminum substrate.
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FIG. 12. Photon trajectories from a dipole in three dimensions. The photon source is on the right. For purposes of illustration, the
transverse geometry has been distorted from an ellipse to a circle, and the longitudinal dimension has been shrunk by a factor of 10.
Black lines are trajectories, and blue dots are photon absorption sites. Photons generated by the beam propagate downstream (to the left
in the figure) and strike the vacuum chamber. Some are absorbed, but most scatter and strike the vacuum chamber further downstream.
The absorption site locations tend to be clumped in several clusters (at the location of downstream dipoles), with decreasing intensity as

we get further from the source.

description of the derivation of the theory, including the
underlying assumptions, which 1is presented in the
Appendix here.

In Sec. III of [20], direct measurements of the surface
roughness parameters ¢ and 7' of two samples of (alumi-
num) technical accelerator vacuum chamber surfaces were
reported. These measurements support the assumptions in
the scattering model that the rms surface roughness and the
correlation length are the same in both transverse dimen-
sions [see Eq. (A54) and Eq. (A60)]. They also support the
use of a Gaussian form for the autocorrelation function.

The measurements, which were done using an atomic
force microscope, yielded an average value for the rms
surface roughness ¢ ~ 100 nm. This value was found to be
roughly the same in both transverse directions and for both
samples, with a variance around 10%—-25%. The observed
autocorrelation function was much closer in form to a
Gaussian than an exponential (see Fig. 13 in [20]). The
fitted autocorrelation coefficient itself varied widely (from
about 3000 nm to about 17000 nm) between the samples
and between transverse directions, but the measurement
variance was so large (25%-65%) that the results were
statistically consistent with no variation with transverse
direction. (see Table I in [20]).

V. PHOTON PRODUCTION, TRANSPORT, AND
ABSORPTION SIMULATION EXAMPLES

A. Photon emission in a single dipole

As an example simulation, we consider the CesrTA ring
with a 5.3 GeV positron beam. The vacuum chamber is a
simple ellipse 9 cm horizontally by 5 cm vertically.
Figure 12 illustrates the three-dimensional nature of the
simulation. In this case, photon generation is restricted to
the upstream end of the first dipole on the right in Fig. 12.
Photons generated by the beam propagate downstream and
strike the vacuum chamber. Some are absorbed here, but

most scatter and strike the vacuum chamber further down-
stream. More are absorbed here, but many others scatter
again. Blue dots represent absorption sites. For this simple
example, in which the photon source is localized longitu-
dinally, the absorption site locations tend to be clumped in
several clusters (at the location of downstream dipoles),
with decreasing intensity as we get further from the source.

B. Photon emission throughout the ring,
realistic vacuum chamber

As a second example, photon emission throughout the
CesrTA ring from a 2.1 GeV positron beam was simulated
with a realistic vacuum chamber profile as shown in
Fig. 13. Four different scattering conditions were consid-
ered: (a) all specular scattering; (b) specular and diffuse
scattering from a polished surface (6 =4 nm, with
T =200 nm); specular and diffuse scattering from two
different rough surfaces: (¢) ¢ = 100 nm, 7 = 5500 nm,
and (d) 6 = 200 nm, 7 = 5500 nm. Diffuse scattering was
simulated, using the model described in Sec. III. Figure 14
shows the absorbed photon distribution (in photons/meter/
radian) vs. polar angle (measured around the vacuum
chamber, with zero angle corresponding to the radial
outside direction), averaged over four different types of
magnetic environment, for the four scattering conditions.

FIG. 13. CestTA beam pipe cross-section. The vacuum cham-
ber (middle) is 9 cm wide and 5 cm high. The cooling water
chamber (left) and pump chamber (right) were not part of the
simulation.
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FIG. 14. Absorbed photon distribution vs. polar angle averaged over each type of magnetic environment. Zero angle corresponds to
the radial outside direction. The different colors correspond different scattering conditions: (a) Black: pure specular scattering; (b) Cyan:
scattering from a polished surface with ¢ =4 nm, 7 = 200 nm; (c) Blue: scattering from a rough surface with ¢ = 100 nm,
T = 5500 nm; (d) Red: scattering from a rough surface with ¢ = 200 nm, 7 = 5500 nm.

In Fig. 14, comparing the results of all specular reflection
[curves (a)] versus the results with specular and diffuse
reflection from a rough surface [curves (c) or (d)], it is seen
that the photon intensity on the top and bottom of the
chamber (polar angles of z/2 and 37/2) with all specular
reflection is much higher than with both specular and
diffuse reflection. This is due to the out-of-plane diffuse
scattering, which results in substantial amounts of radiation
scattering out of the median plane. In addition, the radiation
striking the radial inside edge of the vacuum chamber
(polar angle near z) is also increased in the SBEND and
WIGGLER elements.

Comparing the two rough surfaces cases [curves (c) and
(d)], it can be seen that there is not much dependence on o.
A polished surface [curves (b)] gives considerably less
scattering, as expected, but there is still a significant
difference between this case and pure specular reflection
[curves (a)].

In Fig. 14, the three curves showing absorption with
diffusely scattered photons, curves (b), (c), and (d) are
very similar. The reason for this is the following. Photons
which are absorbed in the drifts have scattered out of the
magnetic elements in which they were produced via

synchrotron radiation. Since the reflectivity is high for
low energy photons with low grazing angles, most of the
scattered photons in the drifts will tend to have lower
energy and be scattered at low grazing angles, which
correlates with wider angular distributions, than in the
magnetic elements. The scattered photon angular distribu-
tion will be narrower for the smoother surface, case (b),
than (c) or (d), but if the distribution is already wide enough
in case (b) that many photons hit the top and bottom of the
chamber and are absorbed, then a wider distribution for
cases (b) and (c) will not make much difference for the
absorption rates, and the results for cases (b), (c) and
(d) will be similar.

Wigglers RF Phase Trombone

Chicane Injection Extraction

FIG. 15. ILC damping ring schematic layout.
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FIG. 16. Vacuum chamber designs for magnetic elements in the
ILC damping ring. The upper part of the figures correspond to the
outer radius of the ring, when installed.

C. Application to the ILC damping ring

As part of the effort [21] to characterize the electron
cloud effect in the ILC damping ring, Synrad3D has been
used to predict the radiation environment in the vacuum
chamber of the ring. The ring layout is shown in Fig. 15.
The radiation environment will be different in the arc
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regions, where the principal source of photons is the arc
dipoles, and the wiggler region, where the wigglers are a
source of intense radiation.

Figure 16 shows the design of the vacuum chamber. The
radial inside and outside of the wiggler antechamber are
designed to fully absorb any photons which strike them. In
the arc and dipole antechambers, a slanted wall on the
radial outside reduces the scattering of photons back into
the chamber.

The absorbed photon distributions predicted by Synrad3D
are illustrated in Fig. 17. Top-down symmetry is broken
here, because of the backscattering from the slanted wall of
the arc and dipole antechambers. The absence of photons at
zero and 7 radians are due to the antechambers.

VI. SUMMARY

As part of the Bmad code ecosystem, a program called
Synrad3D has been written to track synchrotron radiation
photons generated in storage rings. Synrad3D can handle
complicated lattice geometries including nonplanar lattices
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FIG. 17. Photon absorption distributions in different magnetic environments (QUADRUPOLE, WIGGLER, DRIFT and SBEND) and
ring regions (Arcl, Arc2, and Wiggler) for the ILC damping ring.
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and intersecting beam lines. Synrad3D can also handle a wide
variety of vacuum chamber profiles with varying surface
properties.

The program includes scattering from the vacuum cham-
ber walls, based on x-ray data from an LBNL database [15]
for the smooth-surface reflectivity, and an analytical model
[13,14] for diffuse scattering from a surface with finite
roughness.

The predictions of the scattering model have been bench-
marked against measurements at DAPNE. Additional bench-
marking against recent x-ray scattering measurements has
also been reported [20].

Results from the program have given photon absorption
site distributions for the CesrTA ring, which have been used
as input to electron cloud buildup simulations, whose
results can be compared with tune shift [6], retarded field
analyzer (RFA), and shielded pickup measurements [22].
The program has also been used to model the radiation
environment in the ILC damping ring and the Advanced
Photon Source (APS) [23].
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APPENDIX: DIFFUSE SCATTERING
FORMALISM

This appendix presents the details of the formalism used
to describe diffuse scattering. The basic approach is to use
scalar Kirchhoff diffraction theory, as originally formulated
by Beckmann [13], to describe the angular distribution of
power scattered from a random rough surface with a normal
distribution variation in height, with rms ¢, and with a
transverse autocorrelation length 7'

In the material below, we present a derivation of the results
from scalar Kirchhoff diffraction theory for a general sur-
face, starting with an expression from Jackson [24].

For the case of a smooth surface, we show how the
general expressions for the scattered field and power are in
agreement with Jackson [24]. For a random rough surface,
we use the general expressions, following the methodology
of Beckmann [13], to derive results for the mean value of
the scattered power.

We have done this for both a Gaussian and an expo-
nential transverse autocorrelation function. The results are
in agreement with Beckmann [13], for the Gaussian
autocorrelation function. (Beckmann [13] does not con-
sider the exponential autocorrelation function).

Finally, the scattered power expressions are used to
derive marginal and cumulative probability distribution
functions for the angular variables. These functions are
used in the Synrad3D code to choose outgoing scattering
angles from a rough vacuum chamber surface.

1. General scalar theory
The notation and terminology are taken from Beckmann
[13] (Chap. 3). The starting point is Jackson [24] (p. 491,
Eq. 10.108) which gives the Kirchhoff (scalar) field
integral. When rewritten in the notation from Beckmann
[13] (p. 19, Eq. 8), the integral is

etkro
477,'}"0

Ey(rg) = /dS e”¥2T[—n - VE|(r) — ik, - nE(r)]

(A1)

in which k is the photon wave number, E,(r) is the (scalar)
field at the point with radial coordinate r, resulting from
the integral over the whole surface S of the scattered
(scalar) field E/(r). r is a point on the surface S, the local
surface unit normal is n, and the outgoing wave vector Kk is

k, = k(cos 6,7 + sin 0, cos ,X + sin 6, sinh,§).  (A2)
To evaluate this, we write the scattered field as
E;(r) = REye*™. (A3)

Here E| is the incident (scalar) field, and the incident wave
vector Kk is

k| = k(—cos6,Z + sin 0, X). (A4)
R is the smooth-surface field reflection coefficient. The
wave vectors and radius vectors used in Eq. (Al) and
Eq. (A3) are illustrated in Fig. 18 and Fig. 19.

For the terms in the Kirchhoff integral, we have

n-VE(r) = REe® Tk -n (A5)
in which k| is a vector in the direction of the reflected wave
from the local surface. Using

ki-n=-k;-n

(A6)

FIG. 18. Coordinate system illustrating the vectors k; and k,.
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4

surface

FIG. 19. Coordinate system illustrating the vectors r, ry, and n.

then
n-VE(r) = =RE,e™Tik; -n (A7)

and we have

—n - VE,(r) — ik, -nE(r) = RE;e* "i(k; — k) - n
(A8)
)
etkro
E2<r0) = lEO 4][}"0 /S: eVTRv - ndS (Ag)
in which
V= kl - k2
= k(sin @, — sin 6, cos ¢h,)X
— k(cos @, + cos@,)z — ksin 6, sing,y.  (A10)

To describe the surface from which the scattering occurs,
we take the surface height to be a function of the transverse
coordinates x and y:

z=§&(x,y). (A11)
The local surface normal vector is
85 o0&
N=12 X——9. Al2
2-5:8 5,7 (A12)
The local surface normal unit vector is
A Ofs  OE 4
N Z-75X—3Y
= = Al3
in which
02 Q&2
N2=14+=2 42 Al4
* Ox * dy (Al4)

The radius vector to a point on the surface is

r =xX +yy+ £z. (A15)
SO
O¢ o0&
NV-n:—UXa—Uya—y—f—Uz (A16)
v-r=ux+uny+uvé (A17)
The surface area is
o0& 082
dS=/14+= + = dxdy
' Tax Tay
= Ndxdy. (A18)

The integral appearing in Eq. (A9) is then
/ dSeYT™Rv-n = /dx dy e! (V¥ oy +v:d)

S
o0& 0¢
X R(—’Uxa - 1}), 8__)7 + ’liz) (A19)

SO

tkrg

Ey(ro) = 1E04 /dx dy ety +v:d)

7240

xR( 0¢ 85—1—0)

Ui 0y (A20)

It is convenient to transform the integration variables to
cylindrical coordinates at this point, defined by

pr=xr+y? (A21)
;Y
tang ==. (A22)
X
Then
¢ ,65 sin ¢’ 3
xS Y, T, o (A23)
85 , 5 cos¢’ O
Introducing
vl =vi+ 0l (A25)
tan ¢, = (A26)

020708-9



G. DUGAN and D. SAGAN

PHYS. REV. ACCEL. BEAMS 20, 020708 (2017)

we have
0 oF
Uy a + Vy a—y
¢ sin (¢' — ¢,) 0&
= = '—h ) —— TV A2
o[ Gecos (@ - ) - LD L]
and
ez(vxx+1:yy+v,§) _ et[v,pcos (¢'—p,)+v,E] (AZS)
SO
tkrg ,
EZ(rO) = lEO /pdp d¢/ el[vr/’cos((/) —,)+v:E]
471'7'0
X R {— g—j v, cos(¢ — ¢,)
Uy Sin(¢l - ¢1)) ag
_— . A2
+ 2O, (A29)

We can simplify this expression with the substitution

¢=¢" ¢, (A30)
if we assume axial symmetry for &:
f(/), ¢/) = 5(/0’ 4), - ¢1:)-
Then
tkrg
Ez(ro) — lEO /pdp d¢ ez(v,pcosd)ﬂ;zg)
4rr
o¢ v, sin ¢p O
X R(—%vtcosqfhL ! 5 %+ v, | (A31)
2. Scattering from a smooth surface
a. Field
If the surface is perfectly smooth, then
o5 ¢
=—=—=0 A32
$=5," 0 (A32)
and we have
etkro
E,(rg) = 1Eg—— UZR/p dpdg evreos?. (A33)
4rrg

The field reflectivity R has been removed from the integral,
as it is independent of position for a flat surface. If we take
the scattering surface to be a disk of radius a, and surface
area A = za?, then

2r
/pdp d¢ew,pcos¢ — /a/)dp/ d¢ ew,pcosdb
0 0

= 2,,[) pdpJo(pv;)

_ 2zmal(av,)

Uy

(A34)

in which Jy(x) and J,(x) are Bessel functions. Thus

e'kro 2ral(av,)
Ey(r) = iE R :
2(ro) =1 Y477, Yz v,
tkr, J
A LCL)) (A35)
‘ 2zry  av,
in which
v, = —k(cos 6, + cos 6,) (A36)
and
vi = v+ v}
= k*[(sin @, — sin, cos ¢, ) + (sin O, sin ¢, )?]
= k*(sin@? + sin03 — 2 cos ¢, sin O, sin6,).  (A37)

b. Power

According to Jackson [24], the consistent way to use the
scalar electric field to compute the power is to use the
relation

sz_ r(%

= E 2, A38
o =35 1E(0) (A38)
Thus
dQ, (2Zy)4n av,

The total power in the incident field striking the area A is

A . Acos@
Py =—|72-Kky||Eo|? = LIE?  (A40
0 27, |Z - ky|[Eq 27, |Eo| ( )
SO
1 dp, ~AVIR? [Ji(av,)]? (A41)
PO dQZ spec, flat a 47* cos 91 av; .

This represents the specular power reflected from a flat disk of
radius a and field reflectivity R. The Bessel function
dependence represents diffraction from the edge of the disk.
If we take the limit ¢ — oo, the diffraction effects vanish, and
the Bessel function dependence makes the power sharply
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peaked at the point v, = 0, corresponding to the specular
condition on the scattering angles: sin#, = sinf; and
¢, = 0. In this case, integration of this expression over the
scattering angles yields the total scattering probability P, :

1 dP,

— 2 =R?=R
Py dQ,

Py = lim [ dQ, =
4= spec, flat

(A42)

in which we introduce the smooth-surface photon (or
intensity) reflectivity R, which is related to the field reflec-
tivity R by

R =TR>. (A43)
3. Scattering from a rough surface
a. Field

For a rough surface, we use the following relations in
Eq. (A31):

/p dpRet(U,pCoS([)-‘rU;f) %
op
_Ro gpentine]
1w, p=0
b dp R ez(v[pcos P+v.€) (] -+ 1v,p CcOS (b) (A44)
v,
0
/ d¢ R el(”tﬁ’ cos ¢p+v.£) £ sin ¢
. h=2n
_ R sin ¢el(ptpcos¢+vz~f) ’
17, $=0
—— [ R el(vipcosptv.8) (COS ¢ - lU[ﬂSin2¢)'
v,
(A45)
So
ezkrg 1
E,(rg) =—Ey v, (/ dpdgRe!(vweosd+v:)
4-71’7'0 v,

X [=(14w,pcosd)v,cosp+ v,(cosp —1v,psin’¢p)
2
— v+ avt/ d¢ cosqﬁRe’["t“COSfllﬂzf(W/))]>
0

e'kro 2 4+ 92

=1E
! 0477,'7"0

</pdpd¢Rel(”tﬂcos¢+”:§)

Z

/zﬂ d¢ cosqﬁRe’[”r”COS(/’Hzi(mf/’)J> )
0

(A46)

av,
v} + 11%

The last term in the final bracket in Eq. (A46) is evaluated
on the boundary of the scattering region. This term is

typically neglected in the computation of radiant power
scattered from rough surfaces (see Beckmann [13]). As
noted in Ogilvy [14], p. 82, neglecting the boundary term is
correct only for the diffusely scattered power, not for the
specular power. In this application, we are only interested in
the expression for the diffusely scattered power, so we will
neglect this term.

Then, using
v* =07 + 07 (A47)
the field equation is
tkrg 1}2
Ey(rg) = tEg——— [ pdpdp Reweosdud) - (A4R)
4rnry v,

b. Power

The power is

dP2 r2
d—§22:2—ZO()|E2<rO)|2
B> v* 130 Ay ! atn(pp' ')
z
___h / pdpdgp' dp' dg) RR e 44
(47)?Acosf), v?
(A49)
in which
np.p'.¢.¢")=v(pcosp—p'cosd’) +v.(§-¢)  (AS0)

with £(p. ) = & and (o) = €.

The field reflection coefficient 'R depends on the
incident photon energy k, the incident polar angle 6,
and the local surface slopes % and g—f The dependence of R

on the local slopes means that, in general, R cannot be
taken out of the integral. However, since the local surface
slopes are typically small, the conventional treatment (as in
Beckmann [13]) is to ignore this dependence, and treat R
as a function of k and 6; only. We can then take it outside
the integral and introduce the photon reflectivity from
Eq. (A43):

RR' - R?>=R.

With this replacement, the power is

dP2 PoR U4/ / /
2 = dodd o' dp' dg ener' b b))
49, ~ (dn)Acosd, 12 ) P A r dpdd

(A51)

020708-11



G. DUGAN and D. SAGAN

PHYS. REV. ACCEL. BEAMS 20, 020708 (2017)

To proceed with the evaluation of the power, we must
specify the surface height function &(p, ). The conven-
tional approach is to take the surface height £ to be a
random variable. This variable can be described by speci-
fying its statistical measures: the distribution function and
the characteristic function.

Let the two-dimensional distribution function of the
random variable & be w(&,&,). The two-dimensional
characteristic function of ¢ is

(. v) = / A8, dEy (e, & )eliert s

= <e’(“51+U§1)> (ASZ)
in which the brackets specify an ensemble average over the
distribution function.

For this analysis, we assume a Gaussian distribution
of surface fluctuations. The normalized two-dimensional
distribution function is

1 g0+

W(flyfz) = me 202(1-C2) (A53)
in which
o’ = (&) = (&) (A54)

is the mean square surface height fluctuation (assumed to
be the same in both transverse directions), and

(162)

o2

C:

is the autocorrelation (which is typically a function of the
transverse coordinates). From Eq. (A52), the characteristic
function is

—ﬁ(uz+vz+2Cuv)

x(u,v) =ez . (A55)

We can write the ensemble average of the power in terms of
the characteristic function for £ as follows:

sz _p R 1}4
dQ,/) % (4n)*A cos 6, v?

) / pdpdgp dp' d' ("0 99))  (AS56)
in which
<em(ﬂ,p’,¢s¢’)> = ettilpeosd—p cosd) (giv:(¢=¢)
_ ew,(p cos ¢p—p' cos (//))((Uz , _UZ)
_ ew,(pcosqﬁ—ﬂ/ COS¢/)e_"2”§(1_C)‘ (A57)

Thus

/ pdpdgp dp' djf <e"7(/hﬂ’.,¢,¢’)>

_ /pdp d¢pl dpl d¢/ e—g(l—C)ew,(pcosqﬁ—p’ cos¢) (ASS)

in which
g = o*vi. (A59)

Since C is a function of the transverse coordinates, we
cannot remove the term containing C from the integral. We
assume that the dependence of C on the transverse
coordinates has the form in which

C=C(p-p'l/T) (A60)

in which T is the correlation length. By virtue of the
substitution in Eq. (A30), the vector 7, lies along the
X-axis, SO

vi(peosd—plcosd) =7, (p—p)  (A61)
SO

/ pdpddp dp' de’ (enr' )y

_ / dp dpe-00-CHFD) i G- (A62)

Let us introduce the new dummy integration variable 7 [not
to be confused with the vector defined in Eq. (A15)]

F=p - p (A63)
then
/ pdpddp dp d (ener' $4))
= / dﬁ d; e_-(/[l_c(r/T)]e—lf'z';" (A64)

We make a power series expansion of the integrand using:
> [gC(r/T
esC(r/T) — 1 4 27[9 (r/T) (A65)

Substituting this, we have
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[ pdvdsp dp'ag (@4
=eIx {/df) d;;’e‘””
[ = gCH/ T s
/ 1, F
—l—;/dpdp — .

Using the result from Eq. (A34), we can write the first term
in the bracket in Eq. (A66) as

N - 2
/dﬁ dp/eéﬁr.(ﬁ_p/) _ |:277,'£1J1(Cl1}t):| )

Uy

(A66)

(A67)

To evaluate the terms in the sum, we note that the
correlation function C as a function of r typically falls
from 1, at r =0, to zero on the distance scale of the
correlation length 7. Ultimately we will take the radius a of
the scattering region to go to infinity, so 7 < a. Since the
integrand is essentially zero at values of |r| > T <« a, we
can extend the range of integration over 7 to infinity.
Introducing the azimuthal angle f associated with 7 in
cylindrical coordinates, and noting that, for fixed p,

d,g’ = dr = rdrdp,

we have

[ i ecnr

e—lf 7
m!

/ / gC r/T)] / dpemreosP . (A6S)
0
Then, using
/ dp = A (A69)
/)2” dpe=resh =27y (rv,), (A70)

in which A = 7za? is the area of the scattering region, we
have

/dﬁ d;/ [gC(V/T)] e—zﬂ,-;
m!

~ 2mA /oo rdri[gC(r/T)]m
0

" Jo(rv,).

(A71)

Thus

[ pavds dp'ag (@4
2
~ 27[Ae‘9{2a2 {M]

av,

/ 4rl9€( r/ lgc(r/T)™

The power is then

()t ]

0 2
4z cos 6, v? av,

/ gg r/ [gC(r/T)]"

If the surface is smooth, 6 =0 = ¢ =0, the sum dis-
appears in the expression for the power, and we have

dpP,
dQZ =0
In the limit @ —» oo, we have v, > 0 so v =wv, this

expression reduces to the specular power from a flat
surface, Eq. (A41). Thus, in the limit a — oo, we can write

Jo(rvt)}. (A72)

Jo(rvt)}. (A73)

A74
av, (A74)

AR v* [Ji(av,)]?
PO 2 72 .
4n° cos 0 v7

<dP2> e —g 4P ar, (A75)
dQZ dQZ spec, flat dQZ diff
in which
dap, B Re™9 o*
A | 087:005(91 v2
[gC(r/T
/ m0 r/ WoC/ TN ) o). (AT6)

Integration over the scattering angles, the total scattering
probability from a rough surface can be written as

. [dQ, /dP,
P =R=1im [ =2(Z2
scatt al_{g,/ PO <dQ2>
N dQ, dP, dQ, dP,
PO dQZ spec.flat PO dQZ diff
= Pspec + Pyigr (A77)
in which
dQ, dP
Popec = €~ P—zd—Qz = ¢ R (AT78)
0 2 |spec,flat

is the probability of specular reflection, and
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dQ, dp,

P—Odgz = Pocart — Pspec = (1 - e—g)R

diff

Pdiff =

(A79)
is the probability of diffuse reflection.

c. Diffuse power evaluation:
Gaussian autocorrelation function

For a Gaussian autocorrelation function, we have

C(r/T) =e/T, (A80)
so the diffuse power is
dp, _ Re™9 o*
d | 8mcosf 12
00 o gme—mrz/Tz
X W;[) rdrT]o(rv,). (A81)
The integral is
Y rdremriTy (rv,) = T—ze‘Tz”f/‘“" (A82)
A o\rve) =5
so the power is
dpP Re 9 1v*T1T>° &
dhl _py B VIS, (as3)
A€ | gige 8rcos b vz 2 £~
in which
A A4
g 4m
m=e (A84)
Introducing
X = cos0, (A85)
y = cos 6, (A86)
{=cos¢, (A87)
h=sin@;sinf, =V 1—-x*/1-y2,  (A88)
we have
v* = 4k*(1 + cos @, cos O, — sin @, sin 6, cos ¢, )?
= 4k*(1 +xy — h¢)? (A89)
v, = —k(cos @) + cos 0,)
= —k(x+y) (A90)

v? = k*(sin @7 + sin 3 — 2 cos ¢, sin 0, sin 6,)

=k*(2—-x*—y>-2h{) (A91)
g =02 =K (x+y)> (A92)
So we have
dpP Rs%e™9 (1 —h{)F &
A<y | e 4ry (x+y) —
in which
22T
s = kT ==, (A94)
A
where 1 is the wavelength of the radiation. We also have
m 272
X, = g e
m!m
=9 i (A95)
m!m
in which
qg=2-x>—y*-2n. (A96)
So
2 2 0 mn
dPol _ p R Uty = he) g3~ I g
d<2 | gig dry  (x+y) = mlm
(A97)

Generally, the sum may be evaluated numerically to obtain
the differential power distribution.

The parameter s will be large if the correlation length is
much larger than the wavelength of the radiation. Since the
correlation length for a technical surface is typically
T~5pum, s =1 corresponds to a radiation wavelength
of 31 um (photon energy of about 0.04 eV). The condition
s> 1 for a technical surface with 7 ~5 um thus corre-
sponds to photon energies much larger than 0.04 eV.

If gs* is large, the number of terms in the sum can
become very large before convergence is reached, although
the total power may be very small. This can present a
problem for numerical evaluation. To mitigate this, we
make an estimate of the size of the sum, to decide whether
to evaluate it, or simply set the power to zero, as follows.
The maximum value of the summand X,, occurs when

dX
m — O
dm
which implies
q5® = 4Mmax + Amiae (NG = Y (Mipee + 1)) =0

in which y is the digamma function. We can solve this
equation numerically to find m,,,,. Then we estimate
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S gmmax _ qs2
E X < Mmax € Ammax
=1 Mmax Mmax
SO
o0 2
qs
In E Xy Sy Ing—Inmpy, | ———.
Am pax

m=1

If this is less than, for example, —200, we set the power to
zero. Otherwise we evaluate the sum.

1. Large s limit
If s > 1, the argument of the exponential in the sum in
Eq. (A97),

qs?
dm

will be large, and the exponential itself will be small, unless
q is small. g vanishes in the specular direction, when x =y
and { = 1. For directions close to specular, for which
x =Yy + Axand ¢, = A¢, where Ax < 1 and A¢p < 1, we
can write

_ a8
r= 4m
_ e (2—x*—y?-2h0)
4dm
s> 2 Y 2 2
~———:7 A Ag=(1 — . A98
AR AR (a0
Thus, we can write the exponential in the form
A _A¢?
el re e (A99)
in which
m(1—y?)
m
€ =" (A101)
21—y
As s = 00, ¢; = 0. In this limit, we can use
— li —x?/(4e)
8(x) ll—%z\/ﬁe . (A102)
So
5(Ax)5(A¢)
. | B . 1 a2
= | lim e % lim e %
€,—0 2\/771 €,—0 2\/772
5%y
= lim —>eH. A103
sg?o drm © ( )

Thus, from Eq. (A97),

. dP, R (1 +xy—h{)?
llm— = 0 2 /. . N2
=00 d€s | gigy y (x+v)

O m 2
x e g—lim alb et

m!s—codam
m=1

_ poﬁwe—%mxﬁm@ ig_

v (x+y)? “—m!
_p ROwy—he?
=Po; P (1—e9)5(Ax)5(Ag).

(A104)

Because of the delta functions which restrict the angular
dependence to the specular direction, we can set x =y,
{=1,and h = (1 —y?) to get

L P,

lim — =R(1 —e™)6(Ax)o(Agp). A105
lm o], = RO =€ )s(ans(ag).  (A103
The total diffuse scattering is
. . 1.dpP,
ImPges = [ dQlim ——= =(1—-e9R (A106
S iy / 2 1M Pod9y| 4 (I-e)R ( )

as expected from Eq. (A79).

2. Small g limit
The parameter g is

276\ 2
g=(ck)*(x+y)? =4 <$> sin’y

in which we take the grazing angles of incidence and
reflection to both be y = /2 —6,. For small grazing
angles, g will be small if the rms surface roughness is
much less than the wavelength of the radiation. For a
technical surface, the rms surface roughness is typically
0~0.2 ym. For a grazing angle of 30 mrad, g =1
corresponds to a radiation wavelength of 0.075 microns
(photon energy of 16 eV). Thus, at this grazing angle for a
technical surface, g <1 corresponds to photon energies
much less than 16 eV.

For g < 1, we keep only the first term in the sum in
Eq. (A97). Then the diffuse power is

dPy) - p RO+ =) gy
dQ | it dry  (x+y)?
R(sko)?
~ P 1 — h¢)?
0 Ay (I +xy—he)

¢ (k0P (x49)? -2 (A107)
3. Large g limit

The opposite limit, g > 1 corresponds (for a technical
surface and a 30 mrad grazing angle) to photon energies
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much larger than 16 eV. In this case, the reflection is almost
entirely diffuse. For g > 1, a power series expansion in g is
not useful. We return to Eq. (A56) and Eq. (A64) to obtain

dP2 P R ’U4
aQ, 9 (47)2A cos 6, 12

X / dp dp/e=90-C/T)e=iiF — (A108)

Considered as a function of r, the integrand

2

—g[1=C(r/T)] _ a—g(1=¢ )

€ =€

falls off extremely rapidly with r/T for g > 1. In this case,
we can make the approximation

72

2
l-e7”x 7 (A109)

as well as extending the range of integration on 7 to infinity,
giving

/ dﬁ dp_'/e—g[l —C(r/T)]e—lﬁ,-;

2z
/dp/ rdre” 12/ dﬁe‘”’f’“’s/j
0

z2ﬂA/ rdre_i_zJO(rU,)
0

2 —T21:12
~ 271'A2—e 49

; (A110)

in which A = 7a? is the area of the scattering region. Thus

dp, R *T? 4
—=)=Py—————¢e &
dQ, 8mwcos ) v7 2g

R K*(1 +xy—h$)*T? 74
=Py— e
2ﬂy (x+y)?* 29

72 (1 4 xy — hg) 20220

= A A 4(x+y)?

4ﬂy (x+y)*

(Al11)

in which 7 = T//o. Note that this result is independent of
the radiation wavelength A. Thus, for very large g (high
energy photons, except at very small grazing angles), the
scattering distribution (which is essentially all diffuse)
becomes energy-independent for a Gaussian autocorrela-
tion function.

4. Large g and t limit

Typically T > o, so 7> 1. In this case, the differential
power distribution will be close to zero except when
2 —x?>—y*—2h¢ ~0, which is the specular direction,
when x =y and ¢ = 1. For directions close to specular,

for which x =y + Ax and ¢, =
A¢p < 1, we can write

A¢, where Ax < 1 and

2(2 — x> —y? = 2h{)
4(x +y)?

2 1 1_y2
~— A Ag? )
16<x —ETA >

As above, we can write the exponential in the form

/!

po=-

(A112)

_Aal AR

e me e (A113)
in which
4(1 —y?
e =X 2” (A114)
T
4y?
=17 (A115)
So
6(Ax)5(Ag)
. I a2 . 1 a2
= [ lim e % lim e 2
e1—02, /7€q 602, /7€,
2
= li . Al16
rl»n;) 16ﬂye ( )
Thus, from Eq. (A111),
lim &
-0 \ dQ
4R(1 - h¢)? 2
_p RUT =R () T
(x+y) s—o0 167y
4R(1 — h¢)?
_ p, R0+ ; &) 5(Ax)5(A). (A117)
(x+y)

Because of the delta functions which restrict the angular
dependence to the specular direction, we can set x =y,
{=1,and h = (1 —y?) to get

lim - <dP2> = R3(Ax)5(Ag).  (A118)

The total scattering, which is all diffuse but also all in the
specular direction, is

1 /dP
Tlirgpscatt = /szrll»no’loP_o <d—§2i> =R (A119)

as expected from Eq. (A79).
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d. Diffuse power evaluation:
Exponential autocorrelation function

For an exponential autocorrelation function, we have
C(r/T) =eT,

so the diffuse power, expressed in terms of a power series
from Eq. (A76), is

dp, Re=9 o*
b _ o, Re” v y J
A | i 087ZC08911}§ / rdr? o(rv,).
(A120)
The integral is
e mr T2
rdre7iJo(rv) = — 5555, (Al2
A o(rvy) (1 T;g)yz ( )

so the power is

ap,| R 'T?
sz diff -0 877: COS 91 U%
N g"

X e

w1 m!m?(1 +%)S/2
R s*(1 +xy— h¢)?
“2my (x4 )

0

x e 9 Z 9"

= m!m2[1 48 22— —y 2—2h¢) ]3/2

(A122)

1. Large s limit

If s> 1, the summand will be small unless 2 — x? —
y*> —2h{ is small. This quantity vanishes in the specular
direction, when x =y and { = 1. For directions close to

specular, for which x =y + Ax and ¢, = A¢p, where
Ax < 1 and A¢p < 1, we can write
2—x"—y " =2h 2
f2-x 2y Do fae 2+ ag1 - )
m T m? 11—y
(A123)
SO
m? s2(2 —x* —y? = 2h()]3/2
i [1 L5 2l C)}
s m
s [m? y? 3/2
~— |— + Ax? AP*(1 —y? . (A124
njﬁ+x1_f+¢< A (A1)

Thus, we can write

m2 +s2(2—x2—y2—2hij) 3/2

| -~
1
— (€ + k| Ax? + K, AP?)?/? (A125)
€
in which
e=" (A126)
s
2
y
= Al127
K1 1— yz ( )
Ky =1—y% (A128)
As s = 00, € = 0. In this limit, we can use
5(x)8(y) = lim VRIS . (A129)
=027 (€2 + Kk x* + k%)%
So
5(Ax)5(Ap)
B €,\/K1K»
~ 5 270(€? + k| Ax? + K, AP?)3/?
2 2 2 _ _ —2h -3/2
— lim ys[ws( x 2y ‘) (A130)
s—00 271 m? m
Thus, from Eq. (A122),
. sz
lim
s sz diff
o, R +xy—n)?
°V (x+y)?
© m 2
- g .. ys
AN
xe ;;mdﬂumﬁu+ﬂk%#ﬁ@w2
R(1L+xy—ho? 9"
= Py— e 95(Ax)5(Ag) =
e 2
R (1 — h¢)?
- P0—2( Xy 25) (1-e9)5(Ax)5(Ad) (A131)
yo (x+y)

Because of the delta functions which restrict the angular
dependence to the specular direction, we can set x =y,
{=1,and h = (1 —y?) to get

lim ———=| = R(1 —e9™*)5(Ax

= O(Ag). Al132
s—c0 Py d€2, diff ) ( ) ( )

The total diffuse scattering is
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1 dP
lim Py = / dQ, lim ——2

=(1-e9)R (AI33
lim ot =(=e MR (A1)

diff

as expected from Eq. (A79).

2. Large g limit

For g > 1, the power series expansion in g is not useful.
Again, we return to Eq. (A56) and Eq. (A64) to obtain

sz R 1]4 o 7 -
— )Y=Py——— dpd /e_g[l_C(V/T)]e_Wr""
<d92> 0 (47)2A cos 0, v? Pap

(A134)
Considered as a function of r, the integrand
e—9l1=C(r/T)] _ g=g(1-¢7T)
falls off extremely rapidly with r/T for g > 1. In this case,
we can make the approximation

l—eFml

(A135)

as well as extending the range of integration on 7 to infinity,
giving

/dﬁ d;/e—g[l—c(r/T)]e—zri,»?

o0 . 2r
z/dﬁ/ rdre"?T/ dﬁe—w,rcosﬁ
0 0

zZHA/ rdre7Jy(rv,)
0

T2
~ 2wA
2

2,2.3/2
g (1+ng[) /

(A136)

in which A = 74 is the area of the scattering region. Thus

dp, R T?
=Py ) 2,2
dQ, 8z cos by vz 2(1 + 7,)3/2
R (1 +xy —h¢)? 1
05 4 72 .
2y (x4 y)° 147 (2z;c+;§4s—z2hc>}3/z

(A137)

Unlike the case of a Gaussian autocorrelation, this result is
not independent of the radiation wavelength A.

4. Probability distributions
a. General definitions

The differential angular power distribution, normalized
to the total power, may be interpreted as the joint

probability distribution of a photon scattering at a
polar angle 0, and azimuthal angle ¢», = ¢. (In this section,
the azimuthal scattering angle ¢, will be designated as
simply ¢.) Thus, the diffuse scattering joint probability
distribution is

1 1dP
P(x.) =————| . (A138)
No Po d€, | g
The normalization factor N, is
2 I 1dP
Ny = / d¢/ dr——2 . (A139)
0 -1 PodSy| g
The marginal probability distribution in x is
2n
P = [Taprg).  (an0)
0

This is the probability distribution in x, irrespective of ¢.
The marginal probability distribution in ¢ is

Py(4) = /_ i dxP(x, ). (A141)

This is the probability distribution in ¢, irrespective of x.
The conditional probability in x is

P(x,¢)
Py(d)

This is the probability that, given a specific value of ¢, x
occurs. The conditional probability in ¢ is

P(xl¢) =

(A142)

~
=
=

P(¢lx) = (A143)

This is the probability that, given a specific value of x, ¢
occurs.

b. Methodology for generating samples for x and ¢

To generate the scattering parameters x and ¢, sampled
from the joint probability distribution P(x,¢), we first
sample from the marginal probability distribution in x. To
do this efficiently, we form the marginal cumulative
distribution function in x:

Co(x) = /_ " AXPL(Y).

1

(A144)

The form of P,(x) does not admit to doing the integral
analytically. As an efficient alternative to direct numerical
integration, we first expand the function as a series of N
orthogonal Chebyshev polynomials T, (x):
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n=N
_ %
x) =2+ ; T (x) (A145)
in which
T,(x) = cos (ncos™! x),
and
2 (1 P
o2 [ aT D)
1—x2

Typically, the distribution P, (x) is peaked near y = cos 6,
and the expansion requires only a modest number N of terms
in the series for adequate convergence. The integrals of
Chebyshev polynomials can be done analytically:

/ 1 YT, (') = S, (x), (A146)
in which
(1 =n%)S,(x) = cosnx + xcos(ncos™! x)
+ nﬂsin(n cos'x)  (A147)
S0
C,(x) = C"S“ Z e, Sa(x).  (A148)

To find a sample value x, we choose a random number R
between 0 and 1, set Ry = C,(x), and solve for x. This
may be done numerically, for example using the Newton-
Raphson method. Then, given this value of x, the condi-
tional probability distribution in ¢ is

¢ / / _ 1 ¢ / x /
Coteed) = [ P@1s) = s [ awps )
(A149)

As discussed below, this integral may be done analytically.
Then, we choose a second random number R, between 0
and 1, set R, = Cy(¢) and find ¢, again using the Newton-
Raphson method.

c. Gaussian autocorrelation: Probability distributions
For a Gaussian autocorrelation function, the diffuse

scattering joint probability distribution is, from Eq. (A97),

Rs* (1+xy—h{)?

(x+y)?

m

[Se]
x e 9 E 9 e—qs2/4m
m!m

in which ¢ = cos ¢ and ¢ = 2 — x*> — y> — 2h{. To separate
out the ¢ dependence, we define

(A150)

h
i (A151)
h 2
p= % (A152)
Also, if we let v = ko, then
9=ty
S0
2 2 2
Plx. ) = Rs® (1 +xy)“(1- ozccos ) T
4Nmy (x+)
2 2 ‘2 5‘2 COS ¢
(ST e (a1

m=1

1. Marginal probability distribution in x
From Eq. (A141),

LR (143 iy ilﬂm(x + )"
ANymy (x + y)2 — m!m
(2—X2—V2).\2 2”
xXe~ / dpp(1 — acos ) (A154)
0
To do the integral, we use
e = [o(2) +2) Ii(z)coskd.  (A155)

k=1

Then we have

A ’ dp'(1 — acos /)2 =2z8,(8,¢)  (A156)
in which
2181, ) = rola. §)Io() + 2ri (a. §p)1,(B)
L@ ) 123 r@ p)L)
N (A157)

and

= (1 +a?/2)¢p — 2asing + (a*/4) sin2¢
(A158)

ro(a, )
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ri(a, ¢) = —ap + (1 + 3a*/4)sing

—acosgsing + (a?/12)sin3¢p  (A159)

ra(a.¢) = (a?/4)p — asing
N 12(2 + a?) sin 2¢p — 16a sin 3¢ + 3a? sin4¢

48
(A160)
o) kb ing
acoskpsing  ksinkgp
_2acos¢< 74 + kz—l)
. (2+a%)(K* —4) + o?k* cos 2¢
+ sin k¢ 2K = )
(A161)
For ¢ =27
ro(a,2z) = (1 +a?/2)2x
ri(a,2n) = —2an
r(a,2n) = (a?/2)x
r(a,27) =0
SO
278,(p,2x)
2
= 20| (1-+-@/D10(p) = 201,(5) + 5 1)
. {(1 + ), (p) - W] (A162)
and
/27rd ) Besd ﬁ
P(1 —acosp)’e n =2x8; Z,Zﬂ . (A163)
0
Thus
_ Rs? (14 xy)? Plxty) =
0 = e G Y ) (16
in which
2m 2m 1222
Fo(x) =" (”;;'ny) e s,< ,2;;). (A165)
For x=1 or y=1, h=0 so a=pf=0, and

$;(0,27) =1, so

2m 2m
v x+y _2_2)52
F ()() = 7( | ) c - k4m‘ -

(A166)

If s > 1, then > 1, except near & = (. Direct numeri-
cal evaluation of the Bessel function for very large argu-
ments can cause numerical problems. In this case, it is
convenient to introduce the asymptotic form [25] for the
Bessel function, useful for x > 1:

X

\2rx

in which Z;(x) is a polynomial in inverse powers of x:

I(x) = Zu(x) (A167)

- 4k =1 (4K> —1)(4Kk* - 9)
Zi(x) =1~ Sx 2!(8x)?
2 _ 2 _ 2 -
(4 1)(4316!(8x)93)(4k )i (Al68)

Then we can introduce S, (3, ¢):

S2(B.#) = rola.¢)Zo(P) + 2ri(a. ) Z1 ()

o0

+2r(a,@)Z,(B) +2 Z ri(a. §)Z(B)

k=3
(A169)
and we have
s - A170
I(ﬁ’qb):\/zTﬂ Z(ﬁ?¢) ( )
For example, for > 1, to leading order in %,
27 ,
/ d¢'(1 — acos@')?ef ¥ = 2x8,(,2x)
0
25,5 2m) = (1 — ) [Z (A171)
27— ,27) —a)y | —.
Vg’ p
If we return to Eq. (A165) and let
go=2—-x*—y*=2h (A172)

then, for large f#/m, we can use

2m 2m a0

— = e =2 Al173
m!m\/2ﬂmﬁe m ﬂ) ( )

Small g limit.— For g < 1, we keep only the first term in
the power series. Thus

Rs? (1 + xy)? A

T eV )R Al74
oy e+ 7 A

«(x) &

with
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(2»\

Fi(x) =12 (x +y)% SI(:B 2m). (A175)
Large g limit.— For g > 1, from Eq. (A111)
Rz? (14 xy)*(1 — acos ¢)?
P(x,p) ~ 7
4Ny (x+y)
22-x2-y%)
xe A’ ef cosd (A176)
in which
ht?
= A177
P 2(x +y)? ( )
So
2
P.(x) = A dpP(x, )
~ R7? (1 +xy)? %
47TNOy (x + y)
X / dep(1 — acos )l <os?, (A178)
0
Then, from Eq. (A156) and Eq. (A170)
2n , ,
/ d¢' (1 — acos ¢')?e# ¢ =278,(p, 2x)
0
2rel
~ \/7‘32(16/ 2”)
(A179)
So
R7* (1 2
P~ R UEON ) (a180)
2Noy (x+y)
in which
@2y
Fo(x) =e o S,(f,2m)
_ a7
e 4(x+y)2
= S,(p,2x). (A1381)
\/ 2rp
For x=1 or y=1, h=0 so a=p =0, and

S;(0,27) =1, so

=222
Fo(x) =e 4w? |

(A182)

2. Cumulative probability distribution in ¢

From Eq. (A149)
0 / d¢'P(x,¢'),

and from Eq. (A153), we have

Cy(x. ¢) = (A183)

Rs* (1 +xy)? (1—acos¢)

—1%(x+y)?
PED =Ny P
il b (A184)
— m!m
So
C,(x. ) = Rs®> (14 xy)? YA iG
PP T ONGYPL(x) (x+ y)? ~ nl
(A185)
in which
2m<x+y)2m _(27)(27).2)52
(¥, ) = 2zm!m "
x/ d¢'(1 — acos ¢')%e pentl (A186)
0
Using Eq. (A156) and Eq. (A170) we have
Gu(x, )
xX+y 2-x2—y2
= # =5,(/m. )
m!'m
I/Zm(x +y)2m a0
x—— 2 e S LQ). A187
Forx=1lory=1,h=0soa=p=0,and S;(0,¢) = 2”,
)
2m 2m (2or2o2)2
G ) = DT Sty p g

2rm'!m

Small g limit.— For g < 1, we keep only the first term in
the power series in m. So

Rs? (1+xy)? -

x+\
D N ) )
(A189)
in which
Gi(x.) = P(x + )% "T85, (.h).  (A190)

Large g limit.— For g> 1, from Eq. (A111), we have

R7? (1 +xy)*(1 — acos ¢)?
4Nomy (x +y)*

2022
X e 4)+\2 e/j COS(ﬁ

P(x.¢) ~

(A191)

SO
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Rz (1 +xy)?

X Go(x, A192
O =Ny (1) (a4 D) (A1)
with
_20-2-2)
e 4(x+y)? ¢ , ,
Golox.) =5 [ a1 = acosgyer
2 0
r’(z 2- 2>
=e 7 S§(f. )
|

1

ﬁ

e WS, (F, @) (A193)

2rfp

in which the last line is useful for large f'. For x=1or

y=1,h=0s0oa=p =0, and S;(0,¢) = 2ﬂ, o)
_1_2(2—-*2-}’2) ¢
Go(x,p) =e = ten?® —, (A194)
27

Alternate evaluation of the integral over ¢, for very large
p.— The expression presented in Eq. (A156) for the
integral over ¢ as an infinite series does not work very
well for large values of f: the series does not converge very
fast. For large 5, however, the integrand is sharply peaked
near ¢ = 0, so a small angle approximation can be used:

¢ /
/ dg' (1 — acos ¢')?efcosd

0

=¢f /¢ de' (1 — acos ¢')2ePl-cosd)
0

~ef / ’ dd' (1 — a + agp'? /2)2e P72, (A195)
0
Define
H(/}v ¢) - %A(p d¢/<l —a+ a¢/2/2)26—ﬂ¢’2/2
age " 24b + a3+ (¢ — 4]
a 873>
(o)
Al =2B)B + 4 + @>(3 — 4 + 45°)
8xp>/?
(A196)
SO

/¢ A/ (1 — acos@')’el? ~ 2z’ H(B, p). (A197)
0

Comparing Eq. (A156) with Eq. (A197) we have, for
B> 1,

Si(B.¢) = H(p.¢)e’. (A198)

The total integral, for > 1, is, from Eq. (A196)

27zeﬂ(11mH(a p.d)+ hm H(a B ¢))

{—)OO

b 746 (1 — a)?
~ ¢ ET
_ 2ﬁ”(1 _ap?

in agreement with Eq. (A171). Then, using Eq. (A198),
Eq. (A187) becomes

LAY
Gm(x,¢) =We m H(ﬂ/m,qb) (A199)
and Eq. (A193) becomes
Gole.) = TH(P.¢).  (A200)

d. Exponential autocorrelation: Probability
distributions

For an exponential autocorrelation function, the
diffuse scattering joint probability distribution is, from
Eq. (A122),

R s*(1+xy-h{)?
2Nozy  (x+y)?

S m

g
—mim? [1+ 2 (2=x Y —ZhC)]3/2

‘t

R s*(14xy)*(1- acos¢)
- 2Nomy (X+y)

. 2(x+y) ; . (A201)
—imim? [1+M ﬁcgsqﬁp/z

m

P(x.¢) =

xe Y

x+\)

1. Marginal probability distribution in x
From Eq. (A141),
R e Vi) 2
2Nomy (x +y )? &

Fm(X)

(A202)

PL(x) = /0 dpP(x. ) =

in which
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R VM (x + y)>m

Fala) = 214 220
1 —acos ¢)?
/ [ —x —y %) 4ﬂ005¢]3/2
s*(1+xy)°m (X + )"
m![m? 2( -2 =P
(1 — acos ¢)?
x A b (1=6,,cosp)*?
mI/Zm(x + y)Zm /1 Fxy
N 2\/§m!s
8, \3/2 [22 (1 —acos¢)?
() g 020
with
5, = 4p
" 4 22— X —y?)
2h
“E e (A204)
Then we use
2 (1—acos¢)?
L 0
25, 25,
=4[ E(5 ) ek ()| (a0
in which
8 =208 - (5 -2)
90 = S a3 (A206)
~ 2a(6—a)
and the elliptic integrals are
E($lx) = / "oy T — kst (A208)
0
E(k) = E(% K> (A209)
¢
= _— A210
F(@lx) /0 V1 — ksin?@ ( )
K(k) = F(% K). (A211)

Thus,

V2mA" (x + y)

2 T F xy 5 3/2
mls a

ARESRES

(A212)

Fm(x) =

Large g limit For g > 1, from Eq. (A137), we have

(1 + xy — h{)?

P(x, ) =

2N oy s*(x+y)°
y 1
A (2—x2—y2=2h 3/2
[] + ( (x+y§4s2 C)]
R (14 xy)* (1 —acosg)?
2Ngry sPH(x+y)°
1
« (A213)
(2-x*—y?) _ 2ht cos ¢13/2
[T+ (x-+y)*s? (Hy)“sz]
SO
27 Rst*(1 + xy)? (2=
P.(x :/ d¢P(x, ¢ :7/ do
(x) ; (x. 9) Wory o
" (1 — acos ¢)?
[(x + y)*s? +74(2 — x2 — y?) — 2ht* cos ¢]3/?
_ Rs\/T+xy (@)3/2/% (1 — acos ¢)?
ANomy\/272 0 (1 =8y cos ¢)*?
(A214)
with
2ht
oy = . A215
0 (x + y)*s? + 742 — x2 —?) ( )
Using

2z (1 — acos ¢)?
/ W drcos )

() o)

we have
Rs\/T+ xy (8532
P ) = RV IE 0 (%
Nomyy/27
26, 26,
0 E| —— 0p)K .
<Ja@e(22) + ek ()]

(A217)

020708-23



G. DUGAN and D. SAGAN

PHYS. REV. ACCEL. BEAMS 20, 020708 (2017)

2. Cumulative probability distribution in ¢
From Eq. (A149)

1 ¢
Coloxcd) =y [ awPed). (a21s)
and from Eq. (A202) and Eq. (A203), we have
s p . R -2 (x+y)?
| avres =55 Ty ) (4219
in which
- _mA (x + )T+ Xy
Fm(xv¢) - 2\/—m's
3/2 /\2
( ) / “ 1_50{5;)5;5,))%/2 (A220)
We use
, (1—acos¢')?
/ ap (1 =5, cosg)3?
26
~ 200600 9) + 2100 (2] 222
2
+ 2000 (4] 225 (a221)
in which
B (a—8)*sing
009 = s isseosg ")
So
_mA (x + )" /T+ Xy (5 )3/2
Fm(x’ ¢) - \/jm's a
26
anlom )+ 0 (2] 202
+ 92(6,) < 25”11 :| (A223)
and
R -2 x+y S
Col5 ) = 5p N Ty 2 Pl ) (a224)

m=1

Cylx, ) =

Large g limit From Eq. (A214), we have

1 ¢ ,
m/o d¢'P(x,¢')

Rsm 80\ 32
Noﬂ)’\/_f ( )
, (1—acos¢')?
/ a 1—5 (1 =8, cos¢')?/?

_ Rsy/T+uxy (5())3/2
2P, (x)Nomy/27* \ @

x [90(50,¢)+91(50)E (é' = )

2|6, —1
¢| 26

2

(A225)
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