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Closed Orbit Distortion

Contribution from Electric Field

We have
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We can write &2 = z.1n, where x, is the momentum dependent displacement of the closed orbit from
the magic radius. The radial electric field is given by
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so that
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where we have used n = Ry/(1 —n).

What can go wrong? We measure the revolution frequency.
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We see that to convert frequency offset into momentum offset, we need the dispersion averaged around
the ring. Now our usual approximation of the electric field is
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and including the possibility of a closed orbit error
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Then we can write
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Magnetic field is periodic.

B= Z B, cos(rf)

r = 0 establishes closed orbit. r > 0 leads to closed orbit distortion. Evaluate closed orbit and dispersion
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If n=0and £By =1/Ry and §(0) = 8
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where 3 = Ry/+/1 — n. More generally the r*" moment of the dispersion
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where b, = %BT with dimensions of inverse length and in the third line we assume g is constant. Equation

1 also gives the closed orbit distortion for the on energy particle for the r** multipole (r > 0) of the
magnetic field. For r =0 1 becomes
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where by = 1/Rg and f = Rg/v/1 —n. For r = 1, looks pretty much like the calculation with the
measured field so most of field error is n = 1 and b, ~ 5.6 x 107°m~! or about 40 ppm.

The closed orbit distortion for the on momentum particle is z,(6) = n(9).

The next step is to compute (nk). We can write the azimuthal dependence of the electric field, just like
the magnetic. Due to the four fold symmetry
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where k1 = ko so that the first 2 terms give
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We find that only r = 0,4, 8, ... contribute to the average. We can try to compare the contribution from
the m = 1,7 = 4 to the m = r = 0 part.
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Keeping the leading terms
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it appears that kg = ky so that k varies between 0 and 2kg.
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Fitting to the measured azimuthal field on the closed orbit from the measured field we find that by /by ~ 4
ppm and therefore
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~ 233 ppb

That is, the correction due to the distortion of the dispersion function is less than 1 part in a million.



Closed Orbit Distortion

As z,.(0) = n(0), we know that
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To what do we compare this contribution? Let’s try
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~ —25x 10712

or —0.25 x 1073 ppb.

What about that earlier approximation that g is constant around the ring. A better approximation is

B(0) = Bo + Bacos(40 + ¢p)
The term

3 B4

BY2(0) ~ 8% (1 + 55 cos(40 + 69))

Compute the contribution to the dispersion due to the variations in f.
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It looks like we will end up with terms proportional to cos(r £ 4) and cos(r & 4 £ 4), neither of which
will contribute to the integral of dispersion and electric field.
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