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Abstract

This note presents the details of the reconstruction of the muon beam radial distri-

bution of the Run–1 9–day data set with the Cornell fast rotation Fourier method. The

radial distribution is used to estimate the electric field correction to the anomalous spin

precession frequency of the muon ωa.
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1 Introduction

This note presents the reconstruction of the radial distribution of the muon beam for the

Run–1 9–day data set with the Cornell fast rotation Fourier analysis. The details of the

Cornell fast rotation Fourier analysis are presented in [1] and the study of its performance

with toy Monte Carlo simulations presented in [2]. More details about the Cornell fast

rotation Fourier method can be found in [3, 4]. The analysis code’s user guide can be found

in [5]. The fast rotation Fourier method aims at reconstructing the radial distribution of the
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stored muon beam, via reconstructing the frequency distribution, in order to estimate the

electric field correction CE to the anomalous spin precession frequency of the muon ωa. The

electric field correction can be estimated in first approximation with the following formula:

CE =
∆ωa
ωa

= −2n(1− n)β2
〈x2e〉
R2

0

, (1)

where

〈x2e〉 = x2e + σ2, (2)

where xe is the equilibrium radius (average radial position) and σ the radial width of the

beam, R0 is the magic radius of 7112 mm, β the relativistic speed, and n the field index that

relates to the electrostatic quadrupole electric field gradient like:

n =
mγr

pB0

∂Er
∂r

, (3)

where m is the mass, γ the Lorentz factor, r the radial distance from the center of the

storage ring, p the momentum, and Er the radial component of the quadrupole electric field.

The ultimate goal of the Fermilab E–989 experiment is an uncertainty budget on the

electric field correction of 20 ppb. This uncertainty translates into knowing both the average

and the with of the cyclotron revolution frequency distribution to couple 0.1 kHz, which

corresponds to knowing both the equilibrium radius and the width of the radial distribution

to couple 0.1 mm. The electric field correction uncertainty budget for the Run–1 data set

is not as stringent given the anticipated statistical and systematic uncertainties on ωa of

hundreds of ppb. A total uncertainty of 50 ppb on the electric field correction for the Run–1

data set would reach enough precision.

The reader is expected to be familiar with [1] and [2] before reading further this analysis

note.

2 Data set

The data set being analyzed in this note is the Fermilab E–989 Run–1 9–day data set. The

version of the reconstructed data set used in this analysis and provided by the production

team is [6]:

gm2pro daq full run1 9d 5039A goldList.

The full data quality (fill-by-fill, subrun-by-subrun including the magnetic field informa-

tion) is applied. The relevant information to the fast rotation analysis is obtained from the

Recon West data products.
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3 Fast Rotation signal

The details regarding how to produce the fast rotation signal can be found in [1] Sec. 3.

3.1 Positron counts histogram

The input to the fast rotation analysis is the same as the input to the anomalous spin

precession frequency analysis: a histogram of the positron counts versus the time in the fill.

This histogram was produced for each of the 24 calorimeters, and for each of the 8 bunches

in the accelerator cycle. The nominal value of the positron energy threshold is 1,500 MeV.

The choice of the energy threshold will be a source of systematic uncertainty (see Sec. 7.7).

3.2 Combination of the 24 calorimeters

The positron counts histograms of the 24 calorimeters are merged together for the nominal

analysis (the 8 accelerator bunches are merged together for each calorimeter) The histograms

from calorimeters #2 to #24 are added to the histogram of calorimeter #1 (taken arbitrarily

as the reference) time shifting them by (#− 1)× Tc/24 where # is the calorimeter number

and Tc the nominal cyclotron period of 149.14 ns corresponding to the so-called “magic

momentum”. The value of the cyclotron period is updated to the measured value after

completing the first round of the analysis and the analysis is performed again. The small

variation of the cyclotron frequency results in a small variation of the time shift constant

(well below the ns level) and therefore yields a negligible change in the fast rotation results.

Figure 1 shows the positron counts histogram for all the 24 calorimeters combined. The time

interval of the histogram is 1 ns. The analysis is also performed per calorimeter and per

bunch as presented in 5.

3.3 Wiggle fit

It is necessary to fit the positron counts histogram in order to factor out at the very least

the muon life-time (exponential decay). Section 7.6 will show that the results change little

fitting for more than the muon life-time. The default fit is the 9-parameter fit that includes

the muon life-time, anomalous spin precession and CBO modulation:

N(t) = N0 · e−t/τµ [1 +A · cos(ωat+ φ)] · e−t/τcbo [1 +Acbo · cos(ωcbot+ φcbo)], (4)

where N0 is the number of detected positron at t = 0, τµ is the muon boosted life-time

of about 64 µs, A called the asymmetry is the amplitude of the anomalous spin precession

modulation, ωa the anomalous spin precession frequency (or spin tune), φ the phase of the
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Figure 1: Positron counts as a function of time as seen by all the calorimeters combined for

the Run–1 9–day data set for the time ranges: (a) 4-5, (b) 4-14, (d) 4-104 and (e) 4-500 µs

with respect to the beam injection. The time interval is 1 ns.

modulation, τcbo the CBO life-time, Acbo the amplitude of the CBO modulation, ωcbo the

frequency of the CBO modulation, and φcbo the phase of the modulation.

Figure 2 shows the fit of the positron counts histogram starting at 30 µs with respect

to the beam injection. The histogram was re-binned to a time interval of 149 ns to average

out in good approximation the fast rotation feature. Appendix C shows the fit residuals for

different time ranges.

3.4 Fast rotation signal

The fast rotation signal is obtained by dividing out the fit function, given proper normaliza-

tion to account for the 1 ns versus 149 ns time intervals, from the original positron counts

histogram. Figure 3 shows the fast rotation signal for different time ranges. The appendices A

and B show the various fast rotation histograms for each calorimeter and each bunch.
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Figure 2: Fit of the positron counts histogram as a function of time as seen by all the

calorimeters combined for the Run–1 9–day data set for the time ranges: (a) 4-80, (b) 4-130,

(d) 4-230 and (e) 4-500 µs with respect to the beam injection. The time interval is 149 ns.
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Figure 3: Fast rotation signal as a function of time as seen by all the calorimeters combined

for the Run–1 9–day data set for the time ranges: (a) 4-5, (b) 4-14, (d) 4-54, (e) 4-104,

(f) 4-204 and (g) 4-504 µs with respect to the beam injection. The time interval is 1 ns. The

modulation with a 35 µs period corresponds to the beam partially and slowly re-bunching

due to its asymmetric momentum distribution. This could potentially also be a sign of

time-momentum correlation in the incoming beam profile.
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Figure 4: Fast rotation signal as a function of time as seen by all the calorimeters combined

for the Run–1 9–day data set for the time ranges 0-10 µs with respect to the beam injection.

The time interval is 1 ns.

4 Nominal analysis

This section will detail the nominal analysis of the Run–1 9–day data set. Section 6 and 7

will present respectively the statistical and systematic uncertainties estimation. The details

of the analysis can be found in [1].

4.1 Choice of the ts parameter

The ts parameter is the start time of the analysis. The ideal case would be ts = t0 where t0

corresponds to the time when the centroid of the longitudinal profile of the beam is detected

by calorimeter #1 right after injection (first turn of the beam into the ring). This ideal

scenario is unfortunately not possible for two reasons. The first is the saturation of the

calorimeter electronics during the first µs of the fill due to the high intensity of the incoming

beam. The second is the contamination by beam-line positrons of the incoming muon beam.

The positrons are lost due to synchrotron radiation after about 3-4 µs. Figure 4 shows the

fast rotation signal for the first 10 µs. The first µs is not available due to the saturation,

and the signal stabilizes at 3-4 µs after the positrons are lost. The ts value, because of the

reasons explained above, is set to ts = 4 µs. This value is slightly optimized such as the

optimized ts value corresponds to the fast rotation signal intensity of 1. This is done in order

to minimize the effect from spectral leakage (see [1] Sec. 7.1 and 7.2). The optimized value

is ts = 3.9765 µs.
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4.2 Choice of the tm parameter

The tm parameter is the end time of the analysis. The nominal choice for the 9–day data set

is tm = 300 µs. This value is optimized performing a tm scan (see Sec. 7.3). As explained

in [1] Sec. 7.3 and in [2] Sec. 4.3, there is a trade off increasing the length of the fast

rotation signal between improving the frequency resolution and adding exponentially growing

statistical noise at late time. The tm scan allows to optimized this trade off. The exact value

of tm is optimized in the same fashion as ts in order to match the fast rotation signal intensity

with 1.

4.3 Choice of the t0 parameter

The t0 parameter corresponds to the time when the centroid of the longitudinal profile of the

beam is detected by calorimeter #1 right after injection (first turn of the beam into the ring).

Given the saturation and the beam-line positron contamination, the data corresponding to

the first turn is not recorded. The t0 value therefore needs to be optimized. The iterative

optimization procedure is explained in [1] Sec. 6. It relies on a χ2 minimization fitting for

the background of the cosine Fourier transform of the fast rotation signal. Figure 5 shows

the results of the four iterations: the optimum background fit for each iteration and the

χ2 distribution of the background fit as a function of t0. After the fourth iterations, the

optimized t0 value is 128.091 ns. This value is consistent with the work presented in [7].

Figure 6 shows the optimum background fit after the t0 optimization procedure.

4.4 Frequency distribution

Once the t0 optimization is performed, the optimum cosine Fourier transform is available. It

can be corrected for its background using the background fit. The correction corresponds to

subtracting the background fit to the cosine Fourier transform. Figure 7 shows the cosine

Fourier transform and its corrected version limited to the collimator aperture. Figure 8

shows the zoomed-out version for the full frequency range of 150 kHz used for the analysis.

The measured average and width of the cyclotron frequency distribution are respectively

6,698.99 kHz and 8.65 kHz.

4.5 Radial distribution

The frequency distribution can be converted to the radial distribution as explained in [1]

Sec. 8. Figure 9 shows the radial distribution in the beam coordinate (the so-called “magic

radius” of 7112 mm corresponds to r=0, positive (negative) r values correspond to radially

outward (inward) positions) limited to the collimator aperture (±45 mm). Figure 10 shows

the same distribution in the ring coordinate limited and not limited to the collimator aperture.
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The equilibrium radius (average of the radial distribution) is 6.35 mm and the width of the

distribution is 9.19 mm.

4.6 Electric field correction estimation

The electric field correction is estimated from eq. (1), given the radial distribution in Fig. 9,

to be CE = −519 ppb. The field index in eq. (1) is expressed (for the continuous quad

approximation) as:

n = 1− ν2x, (5)

where νx is the radial tune expressed as:

νx = 1− fcbo/fc, (6)

where fcbo = 413.66 kHz is the CBO frequency extracted from the 9-parameter wiggle fit

and fc = 6, 698.99 kHz is the average cyclotron frequency. The resulting field index used to

estimate the electric field correction is n = 0.1197. This value is in very good agreement with

the field index measurement done by the tracker and calorimeter teams.
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Figure 5: Results of the four iterations (from top to bottom) of the t0 optimization procedure.

The figures on the left show the cosine Fourier transform with its cardinal sine background fit

for the optimum t0 value. The figures on the right show the χ2 distribution of the background

fit as a function of t0. The optimized t0 value after four iterations is 128.091 ns.
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Figure 6: Optimum cardinal sine background fit to the cosine Frequency distribution.
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Figure 7: Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine

Fourier transform limited to the collimator aperture.
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Figure 8: Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine

Fourier transform for the full frequency range used in the analysis.
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Figure 9: Radial distribution in the beam coordinate limited to the collimator aperture.
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Figure 10: Radial distribution in the ring coordinate: (a) limited to the collimator aperture,

and (b) not limited to the collimator aperture but to the full range of the analysis.
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5 Per-calorimeter and per-bunch analysis

This section will detail the fast rotation analysis performed per-calorimeter and per-bunch.

5.1 Per-calorimeter analysis

The results presented in Sec. 4 correspond to all the 24 calorimeters combined, i.e., the

results correspond to the azimuthal averaging around the ring. It is important to perform

the analysis per-calorimeter to ensure the results are consistent all around the ring. Any

significant difference would have to be understood and, if needed, included in the anomalous

spin precession analysis. The per-calorimeter fast rotation analysis is almost identical to

the one performed on all the calorimeters combined. The only difference being that the

definition of the background is fixed to the ones from the nominal analysis. Not fixing the

background definition would introduce a systematic bias in the per-calorimeter results, thus

making less straightforward the comparisons of the results. The t0 parameter is optimized

for each calorimeter and is expected to jump by a 24th of the cyclotron revolution period

between two consecutive calorimeters. Figure 11 shows the optimized t0 values as a function

of calorimeter number. The statistical uncertainty on each data point (see Sec. 6.3) is about

0.055 ns and thus too small to be seen. The fit to the data point returns:

t0 = 6.218(2)± 121.85(2) ns. (7)

The number in () is the uncertainty associated with the last digit, i.e., 6.218(2) means

6.218± 0.002 and 121.85(2) means 121.85 ± 0.02. The magic cyclotron period of 149.14

ns corresponds to a time shift of 6.214 ns between two consecutive calorimeters. From the

nominal measured cyclotron frequency of 6,698.9 kHz, using all the calorimeters and bunches,

the measured cyclotron period period is 149.28 and thus the time shift is 6.220 ns. The time

shift obtained from the per-calorimeter results is statistically 1 standard deviation away from

the expected results of 6.220 ns.

Figure 12 shows the radial distributions for all the 24 calorimeters overlaid. The by-eye

agreement is satisfying. Fig. 13 shows xe, σ and CE as a function of calorimeter number.

The error bars are the statistical uncertainty. The results per-calorimeter are statistically

in reasonable agreement, the largest deviation being of the order of 4 standard deviations1.

Assuming that each calorimeter has the same statistical uncertainty, the averaging of them

all yields:

1The systematic uncertainty is expected to be larger than the statistical uncertainty but is not estimated

per-calorimeter.
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xe = 6.39 mm,

σ = 9.18 mm,

CE = −521 ppb,

which are in good agreement with the results presented previously for all the calorimeters

combined. The standard errors2 of the per-calorimeter results are:

δxe = 0.020 mm,

δσ = 0.008 mm,

δCE = 1.38 ppb,

which for xe and CE are twice the statistical uncertainty estimated when performing the

analysis on all the calorimeters combined. This indicates some non-statistical effect in the

per-calorimeter analysis3. Table 1 summarizes all the numbers.

2The standard error is the uncertainty on the average value using the spread of the results.
3In the presence of statistical effect only: the results and the associated uncertainties should be the same

if performing the analysis on the combined inputs or combining the outputs of the individual analysis.
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t0 [ns] xe [mm] σ [mm] CE [ppb]

calo #1 128.175 6.204 9.157 -509.1

calo #2 134.464 6.373 9.160 -518.2

calo #3 140.589 6.421 9.208 -524.5

calo #4 146.702 6.473 9.151 -522.9

calo #5 153.016 6.438 9.226 -526.7

calo #6 159.081 6.512 9.185 -527.6

calo #7 165.304 6.494 9.183 -526.5

calo #8 171.639 6.437 9.164 -522.0

calo #9 177.681 6.521 9.176 -527.4

calo #10 183.908 6.466 9.193 -525.6

calo #11 190.187 6.355 9.131 -515.0

calo #12 196.271 6.341 9.160 -516.6

calo #13 202.586 6.231 9.187 -512.9

calo #14 208.893 6.379 9.158 -518.4

calo #15 214.970 6.486 9.187 -526.3

calo #16 221.399 6.367 9.140 -516.3

calo #17 227.490 6.436 9.181 -523.2

calo #18 233.882 6.226 9.069 -503.6

calo #19 240.012 6.222 9.208 -513.9

calo #20 246.288 6.313 9.198 -518.0

calo #21 252.487 6.465 9.191 -525.5

calo #22 258.589 6.491 9.267 -532.8

calo #23 264.938 6.334 9.241 -522.4

calo #24 271.180 6.267 9.217 -517.0

Table 1: Per-calorimeter results of the fast rotation analysis.
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Figure 13: Analysis results of the fast rotation analysis per-calorimeter: (a) xe, (b) σ, and

(c) CE . The error bars show the statistical uncertainty (see Sec. 6.3).
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5.2 Per-bunch analysis

Figure 39 in App. A shows that the 8 bunches in the accelerator cycle have different lon-

gitudinal profiles. Given the length of the incoming pulse of about 200 ns and the time

inhomogenous kick provided by the three kickers inside the ring, one can expect different

stored radial distributions for each bunch. It is therefore interesting to look at the fast rota-

tion results for each bunch individually4 combining all the calorimeters together. Similarly

to the per-calorimeter analysis, the definition of the background is fixed to the ones from the

nominal analysis. Not fixing the background definition would introduce a systematic bias

in the per-bunch results, thus making less straightforward the comparisons of the results.

The t0 parameter is optimized for each bunch and is expected to be randomly distributed

because of the differences in the beam profiles (the time centroid of each bunch depends on

its profile). Figure 15(a) shows the optimized t0 values as a function of bunch number. The

statistical uncertainty on each data point (see Sec. 6.2) is about 0.03 ns and thus too small

to be seen. Assuming each bunch has the same statistical uncertainty, the averaging of the

t0 values yields:

t0 = 127.75 ns,

which is close to the optimized t0 value when all the calorimeters and bunches are com-

bined together: t0 = 128.091 ns. Figure 14 shows the radial distributions for all the 8 bunches

overlaid.

Fig. 15(b, c, d) show xe, σ, and CE as a function of bunch number. The error bars are

the statistical uncertainty. Assuming that each bunch has the same statistical uncertainty,

the averaging of them all yields:

xe = 6.34 mm,

σ = 9.15 mm,

CE = −516 ppb,

which are in good agreement with the results presented previously for all the calorime-

ters and bunches combined. These results indicate that the per-bunch and per-calorimeter

information can be linearly combined together before or after performing the fast rotation

analysis. Table 2 summarizes all the numbers.

4The anomalous spin precession frequency is nominally performed combining all the bunches together.
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Figure 14: Radial distributions for all the 8 bunches overlaid.

t0 [ns] xe [mm] σ [mm] CE [ppb]

bunch #0 132.315 6.439 9.202 -524.9

bunch #1 120.581 5.887 9.089 -488.0

bunch #2 125.740 6.126 9.175 -506.4

bunch #3 137.372 6.746 9.116 -535.3

bunch #4 124.868 6.282 9.158 -513.2

bunch #5 131.306 6.291 9.215 -518.0

bunch #6 111.938 6.300 9.101 -509.9

bunch #7 137.839 6.656 9.170 -534.4

Table 2: Per-bunch results of the fast rotation analysis.
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Figure 15: Analysis results of the fast rotation analysis per-bunch: (a) t0 (b) xe, (c) σ, and

(d) CE . The error bars show the statistical uncertainty (see Sec. 6.2).
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t0 [ns] xe [mm] σ [mm] CE [ppb]

nominal 0.011 0.008 0.007 0.72

per-bunch 0.030 0.022 0.018 1.86

per-calorimeter 0.055 0.041 0.033 3.43

Table 3: Statistical uncertainty on the results of the nominal, per-bunch and per-calorimeter

fast rotation analysis.

6 Statistical uncertainty

6.1 Nominal analysis

This section will detail the estimation of the statistical uncertainty. The estimation relies on

bootstrapping to generate many pseudo data set with varied statistics. Figure 16 shows a

diagram of the procedure. Each pseudo data set is generated from varying the statistics of the

original positron counts histogram of all the 24 calorimeters combined. The number of entries

Ni in each bin i is varied randomly by either + or -
√
Ni, i.e., the variation follows a Poisson

statistics (the positron counts histogram corresponds to a counting experiment). The fast

rotation analysis is performed on each of the many pseudo data in order to get an ensemble of

results from which is estimated the statistical uncertainty. The definition of the background,

i.e. which data point are defined as background, is fixed for analyzing all the pseudo data

set. This is necessary to avoid a systematic effect due to the background definition5. The

parameters t0, ts and tm are optimized for each pseudo data set. Figure 17 shows the ensemble

of results for the nominal fast rotation analysis. The statistical uncertainty is taken as the

standard deviation of the distribution of results. Table 3 summarizes the numbers. The

statistical uncertainty appears to be very small and will be negligible in comparison to the

systematic uncertainties (see Sec. 7). Figure 18 shows the statistical correlation distributions

between the results. It appears that xe is very strongly anti-correlated with t0. This is

explained by the fact that changing t0 skews the cosine Fourier transform to the right or to

the left, therefore shifting its average value one way or the other.

6.2 Per-bunch analysis

The procedure above is used to estimate the statistical uncertainty of the results per-bunch

with the 24 calorimeter combined, i.e., the statistics is an 8th of the nominal statistics.. The

estimation is performed using bunch #0. It is assumed that the statistical uncertainty of the

other 7 bunches is the same. Figure 19 shows the distributions of the results. The statistical

5This effect would translate into multiple peaks in the distribution of the results. These peaks would have

the same standard deviation but different average values.
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Figure 16: Diagram of the procedure for estimating the statistical uncertainty on the fast

rotation results.

uncertainty scales as expected:
√

8 times bigger than the values for the nominal analysis

which accounts for analyzing 1 bunch versus analyzing 8 combined.

6.3 Per-calorimeter analysis

The procedure above is used to estimate the statistical uncertainty of the results per-calorimeter

with the 8 bunches combined, i.e., the statistics is a 24th of the nominal statistics. The esti-

mation is performed using calorimeter #1. It is assumed that the statistical uncertainty of

the other 23 calorimeters is the same. Figure 20 shows the distributions of the results. The

statistical uncertainty scales as expected:
√

24 times bigger than the values for the nominal

analysis which accounts for analyzing 1 calorimeter versus analyzing 24 combined.
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Figure 17: Analysis results of the pseudo data for the nominal analysis: (a) optimized t0,

(b) xe, (c) σ, and (d) CE . The title of each histogram corresponds to the mean and standard

deviation of the distribution.
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Figure 18: Statistical correlation between: (a) CE , σ and xe, (b) ∆t0 =< t0 > −t0, σ and

xe, (c) σ and t0, (d) xe and t0, and (e) σ and xe, The title of the 2D histograms corresponds

to the correlation coefficient between the two variables.
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Figure 19: Analysis results of the pseudo data for bunch #0: (a) optimized t0, (b) xe, (c) σ,

and (d) CE . The title of each histogram corresponds to the mean and standard deviation of

the distribution.
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Figure 20: Analysis results of the pseudo data for calorimeter #1: (a) optimized t0, (b) xe,

(c) σ and (d) CE . The title of each histogram corresponds to the mean and standard deviation

of the distribution.
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t0 [ns] xe [mm] σ [mm] CE [ppb]

cardinal sine 128.091 6.35 9.19 -519

error function 128.091 6.35 9.19 -519

triangle function 127.993 6.42 9.23 -526

systematic 0.05 0.04 0.02 3.5

Table 4: Estimation of the t0 systematic uncertainty. The systematic uncertainty is estimated

as half the maximum variation between the results from the three background fit functions.

7 Systematic uncertainties

The philosophy of the systematic uncertainties estimation is to vary or turn on/off the various

analysis parameters and take the value of the uncertainties as half the maximum variation in

the results in order to obtain a symmetric ± uncertainty.

7.1 t0 systematic

As shown in [2] Sec. 4.1, the sub-ns knowledge of the t0 parameter is essential in order to reach

the dozens of ppb uncertainty on CE . Figure 21 shows how xe, σ and CE vary as a function

of t0. The small change in σ drives the limited change of 50 ppb in CE . The large relative

variation of xe does not significantly impact CE given that xe and σ contribute with the

same weight t0 the CE calculation and σ = 9.2 > xe = −6.4 mm. The source of uncertainty

from t0, as detailed in [2] Sec. 4.1, is estimated by performing its optimization, and then

the remaining analysis, using three different fit functions for the background: cardinal sine,

error function, triangle-based function. Table 4 shows the analysis results using the three

functions. The systematic uncertainty is estimated as half the maximum difference in the

results from the three background fit functions.
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Figure 21: Results of the fast rotation analysis as a function of t0 for a 1 ns range: (a) xe,

(b) σ, and (c) CE .
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7.2 ts systematic

In an ideal world, the fast rotation Fourier analysis would be performed from ts = t0 in order

to avoid the complication due to missing early data (see Sec. 4.1). The ideal world would

also allow to start the analysis at ts = 30 µs, time at which the anomalous spin precession

frequency analysis starts. The main reason for skipping the first 30 µs is to leave time for

the beam to stabilize after the scraping period ends at about 25 µs (the first-to-second step

scraping transition happens at 7 µs). Scraping shifts the closed orbit of the beam both

vertically and horizontally. Therefore using data before 25 µs might bias the reconstructed

radial distribution that would end up not being fully representative of the distribution of the

stored beam after 25 µs. There are also other effects that are more important early time in

the fill versus later in the fill: instantaneous pile-up rate, gain correction, muon loss. It is thus

essential to show that the fast rotation results change within an acceptable range between

the earliest possible ts and ts = 30 µs.

The ts scan (see [2] Sec. 4.2) is performed using the triangle-based background fit function.

The t0 value is fixed for all the ts values to the one optimized for the nominal analysis

(ts = 4 µs) given the earliest the start time the more the t0 optimization performs well. The

definition of the background is fixed to the one defined by the nominal analysis. Figure 22

shows the results of the analysis as a function of ts between 3 and 30 µs. Figure 23 shows

the same results only up to 25 µs. The statistical uncertainty on each point is not shown but

is increasing exponentially with time since the fast rotation statistics decreases exponentially

(muon life-time). Figure 24 shows the background fit using the triangle-based function for

six different ts values. Figure 25 shows the information related to the background fit quality:

χ2/d.o.f. and residuals.

The trend of the results cannot currently be explain with satisfaction. Tentative explana-

tions could be made using arguments related to beam dynamics and scraping. For instance,

the first step scraping moves the radial closed orbit at early time and scrapes the radial tail

of the beam, thus shifts the equilibrium radius and shrinks the width of the beam. The

second step then re-centers the beam and allows its width to grow and its equilibrium radius

to move. These kind of by-hand arguments need to be thoroughly investigated with full

scale high statistics simulations using BMAD and GM2RINGSIM. For now, and for the scope of

estimating a systematic uncertainty, half the maximum variation in the results for the ts scan

from 3 to 25 µs is used as the systematic uncertainty and is under control for the Run–1.

The upper limit of 25 µs is motivated by studies done with toy Monte Carlo simulations [2]

and might be sufficient since scraping is over by that time. The last 5 µs, between 25 and

30 µs, to reach the analysis start time of the anomalous spin precession frequency remain for

now un-accounted for.

32



5 10 15 20 25 30
tS [μs]

6.35

6.40

6.45

6.50

6.55

6.60

x e
 [m

m
]

Runμ1
end game

(a)

5 10 15 20 25 30
tS [μs]

9.15

9.20

9.25

9.30

9.35

9.40

9.45

σ 
[m

m
]

Run-1
end game

(b)

5 10 15 20 25 30
tS [μs]

−550

−545

−540

−535

−530

−525

−520

−515

C E
 [p

pb
]

Run-1
end game

(c)

Figure 22: Results of the fast rotation analysis as a function of ts for a 30 µs range using the

triangle-based background fit function: (a) xe, (b) σ, and (c) CE .
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Figure 23: Results of the fast rotation analysis as a function of ts for a 25 µs range using the

triangle-based background fit function: (a) xe, (b) σ, and (c) CE .
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Figure 24: Background fit of the cosine Fourier transform using the triangle-based function:

(a) ts = 5 µs, (b) ts = 10 µs, (c) ts = 15 µs, (d) ts = 20 µs, (e) ts = 25 µs, (f) ts = 30 µs.
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Figure 25: Background fit information for the triangle-based function: (a) χ2/d.o.f. as a

function of ts, (b) fit residuals as a function of ts, and (c) χ2/d.o.f. as a function of fit

residuals.
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7.3 tm systematic

As explained in [1] Sec. 7.3 and [2] Sec. 4.2, there is a trade-off increasing the length of the fast

rotation signal between improving the resolution and adding increasing noise. The interest of

performing a tm scan is to optimize this trade-off. Figure 26 shows the fast rotation analysis

results as a function of tm for ts fixed to ts = 4 µs. Figure 27 shows the same information but

for tm > 150 µs. For each tm value, the analysis is performed with its nominal configuration.

Figure 28 shows the background fit residuals and χ2 per degrees of freedom as a function of

tm. Figure 29 shows the same information but for tm > 150 µs. Overall, the results appear

the most stable for tm values between 150-300 µs. Before 150 µs, the resolution is too low and

leads to a poor fidelity of the frequency distribution. After 300 µs, the increasing statistical

noise of the fast rotation signal (see Fig. 3(f)) distorts the cosine Fourier transform. Figure 30

shows the background fit to the cosine Fourier transform for six values of tm. The systematic

uncertainty is taken as half the maximum variation of the results between 150 and 300 µs.

The variation in the results might mainly be due to spectral leakage given the small size of

the statistical uncertainty and the very high statistical correlation between consecutive scan

data points.
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Figure 26: Results of the fast rotation analysis for ts = 4 µs as a function of tm: (a) xe, (b)

σ, and (c) CE .
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Figure 27: Results of the fast rotation analysis for ts = 4 µs as a function of tm for tm > 150

µs: (a) xe, (b) σ, and (c) CE .
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Figure 28: Background fit quality as a function of tm: (a) χ2/d.o.f., and (b) fit residuals.
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Figure 29: Background fit quality as a function of tm for tm > 150 µs: (a) χ2/d.o.f., and (b)

fit residuals.

41



6640 6660 6680 6700 6720 6740 6760 6780
Frequency [kHz]

−2

0

2

4

6

8

Ar
bi
tra

ry
 u
ni
ts

background fit
background

(a)

6640 6660 6680 6700 6720 6740 6760 6780
Frequency [kHz]

−2

0

2

4

6

8

Ar
bi
tra

ry
 u
ni
ts

background fit
background

(b)

6640 6660 6680 6700 6720 6740 6760 6780
Frequency [kHz]

−2

0

2

4

6

8

Ar
bi
tra

ry
 u
ni
ts

background fit
background

(c)

6640 6660 6680 6700 6720 6740 6760 6780
Frequency [kHz]

−2

0

2

4

6

8
Ar
bi
tra

ry
 u
ni
ts

background fit
background

(d)

6640 6660 6680 6700 6720 6740 6760 6780
Frequency [kHz]

−2

0

2

4

6

8

Ar
bi
tra

ry
 u
ni
ts

background fit
background

(e)

6640 6660 6680 6700 6720 6740 6760 6780
Frequency [kHz]

−2

0

2

4

6

8

Ar
bi
tra

ry
 u
ni
ts

background fit
background

(f)

Figure 30: Background fit to the cosine Fourier transform for different tm values: (a) 50,

(b) 100, (c) 150, (d) 200, (e) 400, and (f) 500 µs.
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7.4 Frequency interval

As explained in [1] Sec. 7.3 and [2] Sec. 4.4, the nominal frequency interval used to produce

the cosine Fourier transform is 2 kHz. This 2 kHz value is smaller than the intrinsic frequency

resolution that is set by the number of bins and time interval of the fast rotation signal. For

ts = 4 µs, tm = 300 µs, and a 1 ns time interval, the intrinsic frequency resolution is:

1/(time interval× number of bins) = 1/(10−9 × 296000) = 3.34 kHz.

Using a frequency interval of 2 kHz leads to over-sampling responsible for the modulation

seen in Fig. 30(a) for instance. Over-sampling was shown in toy Monte Carlo studies (see [2]

Sec. 4.4) to be sound. Nonetheless, a frequency interval scan is performed to ensure the same

behavior in data. Figure 31 shows the fast rotation results as a function of frequency interval.

The allowed values for the frequency interval are integer numbers of the frequency window

used for the cosine Fourier transform. The results appear stable for a frequency interval up

to 2.5 kHz. This behavior is the same as the one observed in the toy Monte Carlo studies

(see [2] Sec. 4.4). The systematic uncertainty is taken as half the maximum variation in the

results for the upper limit of the frequency interval of 2.5 kHz. Above 2.5 kHz, the fidelity

of the frequency/radial distribution cannot be restored well enough due to the small number

of data points.
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Figure 31: Results of the fast rotation analysis as a function of the frequency interval: (a) xe,

(b) σ, and (c) CE .
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Figure 32: Background fit to the cosine Fourier transform for different frequency interval

values: (a) 0.25, (b) 1.0, (c) 1.5, (d) 2.5, (e) 3.0, and (f) 3.75 kHz.
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Figure 33: Background fit to the cosine Fourier transform for two background definition

thresholds: (a) N = 1, and (b) N = 5.

7.5 Background

The definition of the background is key for optimizing t0 and correcting the cosine Fourier

transform. The functional form of the background is already part of the t0 systematic un-

certainty. The other sources of uncertainty from the background have to do with how it

is defined, and how its statistical fluctuation can affect the analysis results via a lever arm

effect, the data point being far from the mean of the distribution.

7.5.1 Background definition

The background of the cosine Fourier transform is defined as the data point that are within

±N · σbkg of the fit with σbkg being the statistical noise of the background estimated from

the fit residuals for the optimal t0 value. The parameter that can be varied is N , its nominal

value being N = 2. The larger N the closer to the mean of the distribution the background

will get. Figure 33 shows the background fit for two values of N : N = 1 and N = 5.

Figure 34 shows the results of the background threshold scan. Similarly to what is observed

in toy Monte Carlo studies (see [2] Sec. 4.5), the width of the radial distribution decreases

with N increasing. It is due to the fact that the background definition moves closer to the

mean of the distribution for increasing N . It results in the background fit to be slightly

shifted upward to account for the extra background data points, and therefore the corrected

frequency distribution is shifted downward slightly, reducing the width in consequence. The

systematic uncertainty is taken as half the maximum variation observed in the scan results.
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Figure 34: Results of the fast rotation analysis as a function of the background threshold

definition N : (a) xe, (b) σ, (c) CE , and (d) t0.

7.5.2 Background removal

The statistical fluctuation in the tail (background) of the radial distribution can bias the

extraction of the equilibrium radius and width given a potential large lever arm effect. This

effect is addressed by removing (zero-ing out) the background from the distribution. The

nominal fast rotation analysis is performed once with N = 2. The value of N is then varied

and the data point within ±N · σbkg of the nominal fit function (i.e. the data point tagged

“background”) are removed. Figure 35 shows the radial distributions for N = 1, 5 with

background removal. Figure 36 shows the results of the background removal scan. The

systematic uncertainty is taken as half the maximum variation observed in the scan results.
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Figure 35: Radial distribution with background removal for: (a) N = 1, and (b) N = 5.
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Figure 36: Results of the fast rotation analysis as a function of the background removal

threshold N : (a) xe, (b) σ, and (c) CE .
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7.6 Wiggle fit

The nominal fit to the positron counts histogram is the 9-parameter fit: muon life-time,

anomalous spin precession and CBO modulation. The anomalous spin precession frequency

performs a fit to the positron counts histograms with many more parameters: pile-up, vertical

waist, muon loss etc. In order to estimate the importance of the accuracy of the fit to the

data, the analysis is performed on fast rotation signals produced using a different number

of parameters in the wiggle fit: 2 (muon life-time only), 5 (muon life-time and anomalous

spin precession) and 9 (muon life-time, anomalous spin precession and CBO modulation).

Figure 37 shows the radial distribution for the three cases. The results appear to be consistent

within the statistical uncertainty. This is not surprising because both the anomalous spin

precession and CBO modulation frequencies (and their beating/aliasing frequencies) are not

overlapping with the frequency range of the cyclotron revolution. It is important to note

that fitting at least for the muon life-time is essential to avoid the artificial broadening of the

cyclotron frequency peak due to the exponential decay in the fast rotation spectrum6. One

question remains: what of the potential effects of pile-up, muon loss and gain correction not

included in the fit? The ts scan provides a good handle on it because the size of the pile-up,

muon loss and gain correction effects significantly decreases over the first 30 µs of the fill and

therefore are part of the systematic uncertainty associated with the ts scan.

6The fast rotation exponential feature will enter the Fourier transform calculation and will yield a frequency

broadening.
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Figure 37: Radial distributions for fast rotation signals produced from a wiggle fit with:

(a) 2 parameters, (b) 5 parameters, and (d) 9 parameters.
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7.7 Positron energy threshold

The nominal positron energy threshold used to produce the positron counts histogram is

1,500 MeV. Given the anomalous spin precession frequency analysis is performed for different

energy threshold values and with different methods (T-method, A-method, E-method, Q-

method etc.), it is important to perform the fast rotation analysis as a function of the energy

threshold. The nominal fast rotation analysis is therefore performed7 for positron counts

histograms produced with a wide range of positron energy threshold. Appendix D shows

fast rotation histograms for different positron energy thresholds. Figure 38 shows the results

of the fast rotation analysis as a function of the positron energy threshold. The statistical

uncertainty on each data point is not shown, but increases with increasing energy threshold.

There is a clear trend of xe and σ increasing with the energy threshold. This effect is believed

to be related to a calorimeter acceptance effect, and not to a beam dynamics effect. It needs

to be thoroughly studied with full scale high statistics simulations with BMAD and GM2RINGSIM.

The value of the systematic uncertainty is taken as half the maximum variation and is under

control for this Run–1 data set.

7The only exception being the background definition being fixed to avoid the associated systematic effect.
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Figure 38: Results of the fast rotation analysis as a function of the positron energy threshold:

(a) xe, (b) σ, (c) CE , and (d) t0.
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t0 [ns] xe [mm] σ [mm] CE [ppb]

t0 0.05 0.04 0.02 4

ts – 0.06 0.04 6

tm 0.13 0.11 0.09 10

t0±Tc – 0.02 0.07 5

frequency interval 0.02 0.03 0.05 3

background definition 0.08 0.06 0.11 8

background removal – 0.03 0.06 5

wiggle fit 0.01 0.01 0.01 1

energy threshold 0.08 0.15 0.04 10

systematic (0% correlation) 0.18 0.24 0.19 19

systematic (100% correlation) 0.37 0.51 0.49 52

Table 5: Summary of the estimation of the systematic uncertainties and the total uncertainty

assuming 0% and 100% correlation..

7.8 Summary

The correlation between the various systematic uncertainties has not been estimated. Table 5

summarizes the estimation of the various systematic uncertainties and the corresponding total

assuming 0% correlation (quadratic sum) and 100% of correlation (linear sum) between all

the systematic uncertainties. The final systematic uncertainty numbers are taken as the

average of the 0% and 100% correlation cases.

8 Conclusion

The final results of the fast rotation analysis of the Run–1 9–day data set data set is:

xe = 6.35± 0.01 (stat)± 0.38 (syst) mm,

σ = 9.19± 0.01 (stat)± 0.34 (syst) mm,

CE = −519± 1 (stat)± 36 (syst) ppb.

The level of uncertainty is satisfying for the Run–1. There is room, however, to improve

the uncertainty by bettering the understanding of the analysis performance and impacts from

beam dynamics and detector effects. It will rely on thorough studies with toy Monte Carlo,

BMAD and GM2RINGSIM. The main uncertainty to be tackled are related to the start and end

time scans, as well as the positron energy threshold and background definition. It is possible
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that additional systematic uncertainties will be estimated in the future: time-momentum

correlation of the incoming bunch, muon loss, etc. (see [2] Sec. 5). The correlations between

the various systematic uncertainties need to be estimated for a more accurate estimation of

the total systematic uncertainty8. The approach of estimating a systematic uncertainty by

taking half the maximum variation in the results for a given systematic scan could also be

revisited, taking the spread in the results is an alternate approach.

This will not happen for Run–1 but will hopefully happen for the Run–2 analysis. Im-

provements for Run–2 are expected using the information proided by the IBMS3 detector.

The IBMS3 detector can measure the beam profile for the first µs after injection starting

from injection itself. It will likely prove useful.

Important: the uncertainties above are associated with the fast rotation analysis itself.

It needs to be added the uncertainty associated with the simulation efforts led by David

Rubin. The work aims at estimating the uncertainty on the electric correction due to the

uncertainty on the electrostatic quadrupoles plate alignment, voltages etc. The final number

on the electric field correction is currently:

CE = −519± 36 (fast rotation analysis)± ?? (simulation) ppb.
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A Fast rotation histogram per-bunch

Figure 39 shows the fast rotation histograms between 4 and 5 µs after injection for the 8

individual accelerator bunches.

B Fast rotation histogram per-calorimeter

Figures 40, 41 and 42 show the fast rotation histograms between 4 and 5 µs after injection

for the 24 individual calorimeters.

C Wiggle fit residuals

Figure 43 shows the wiggle fit residuals for different time windows with the common lower

value being the start time of the fit of 30 µs. The residuals, as expected, are nott randomly

distributed according to the statistical uncertainty. The residuals exhibit clear features.

These features are due to missing ingredients in the fit: vertial waist modulation, muon loss,

gain correction, pile-up etc.

Figure 44 shows the wiggle fit residuals for the time window 4-31 µs. The residuals

exhibit features with larger amplitude. The main one is due to the CBO modulation. The

CBO frequency changes over the course of the first 30 µs due to scraping and thus is not

properly modeled for a fit start time of 30 µs with a fitted constant CBO frequency.

D Fast rotation histogram for different positron energy thresh-

olds

Figure 45 shows the fast rotation signal between 4-5 µs after injection for different positron

energy thresholds.
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Figure 39: Fast rotation histograms from 4 to 5 µs after injection for the 8 accelerator

bunches: (a) to (h) are respectively bunches #0 to #7.
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Figure 40: Fast rotation histograms from 4 to 5 µs after injection for 8 calorimeters: (a) to

(h) are respectively calorimeter #1 to #8.
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Figure 41: Fast rotation histograms from 4 to 5 µs after injection for 8 calorimeters: (a) to

(h) are respectively calorimeter #9 to #16.
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Figure 42: Fast rotation histograms from 4 to 5 µs after injection for 8 calorimeters: (a) to

(h) are respectively calorimeter #17 to #24.
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Figure 43: Residuals of the 9-parameter wiggle fit for six different time window: (a) 30-31,

(b) 30-40, (c) 30-80, (d) 30-130, (e) 30-230 and (f) 30-300 µs. The start time of the fit is

30 µs.
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Figure 44: Residuals of the 9-parameter wiggle fit for the time window 4-31 µs. The start

time of the fit is 30 µs.
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Figure 45: Fast rotation histograms from 4 to 5 µs after injection for 8 positron energy

thresholds: (a) 500, (b) 700, (c) 900, (d) 1100, (e) 1300, (f) 1500, (g) 1700, and (h) 1900

MeV.
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