# Efield/Pitch correction overview

D. Rubin January 17, 2019

1/17/19

## E-field and pitch corrections

#### **E-field correction**

First order estimate depends on:

- 1. Momentum (radial) distribution
- 2. Quad voltage

Momentum distribution is extracted from FR analysis (FFT and CERN)

 $C_E = -2\beta^2 n (1 - n) \frac{\left\langle x_e^2 \right\rangle}{r_0^2}$ 

Consistency of FFT and CERN methods?

Do the FR analyses give the right answer?

FR analysis is dominated by early time data – (before debunching)

- First order correction in FFT method increases with delay of start time
- The early time distribution may be biased
- what is the effect of scraping and the shifting of the closed orbit?
- Is the momentum distribution correlated with time into the fill?
- Are we looking at the right muons?

## E-field and pitch corrections

#### **E-field correction**

Are there higher order contributions that would lead to modifications to the base correction? Due to

- 1. Quad multipoles
- 2. Quad misalignment/field errors
- 3. Betatron amplitude
- 4. Non uniformity of the dispersion function

$$C_E = -2\beta^2 n (1-n) \frac{\left\langle x_e^2 \right\rangle}{r_0^2}$$

#### **Detector effects**

- What is the effect of pile-up (especially at early time)
- Does calorimeter gain bias the FR measurement

### Efield checks

How to test the FR analysis?

- Explore analytically dependence on betatron amplitude, quad offsets
- Simulation
  - Generate a fast rotation signal in simulation with known momentum (radial) distribution and check that the FR analyses give the right answer
  - Generate distributions with/without scraping and determine if the momentum distribution is different and/or the FR analysis is consistent?
  - Explore dependence on quad misalignment, betatron amplitude
  - is a reliable proxy for E-field shift Our correction assumes that correction assumes that  $\langle eta imes \mathbf{E} 
    angle$  is a relia Compare with simulation with spin-tracking
  - Muon losses gm2ringsim distribution of evolution of distribution including muon losses
- **Trackers** 
  - Measure radial distribution early to late to establish its stability.
- Pile up ? Gain?

#### Pitch correction

Lowest order estimate depends on:

- 1. Measure of vertical distribution
- 2. Quad voltage

Vertical distribution is extracted from tracker and calo data

- Consistency of tracker angular distribution with offset distribution (vertical)?
- Tracker/calo consistency?
- Consistency with simulation?

Higher order contributions from?

- 1. Radial B-field
- 2. Quad misalignment/field errors
- 3. Path length
- 4. Is the vertical distribution the whole story?

Quantify these dependencies (analytically and with simulation)

We determine pitch correction by estimating  $\langle (\tilde{\beta} \cdot \mathbf{B}) \tilde{\beta} \rangle$  along the muon's trajectory We can compute the pitch correction directly by spin-tracking.

Are the results consistent? (Check with simulation)

#### Global checks

Simulate conditions of the different runs in as much detail as possible

 Generate and track distribution and compute E-field and pitch corrections for that distribution

Not a substitute for measurement but a valuable cross check

1/17/19 D. Rubin