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We consider the case where in addition to the nominal vertical magnetic field there is a longitudinal component. The
total field B = Bl(cos θx̂− sin θŷ) +Bz ẑ. Since the velocity of a muon circulating at the magic radius is everywhere
parallel to the longitudinal field, the particle trajectory is unaffected. The velocity

β = β(cosωtx̂− sinωtŷ)

is determined by the vertical component. (The circular orbit is in the x-y plane, θ = ωt.)

UNIFORM LONGITUDINAL FIELD

If Bl is uniform, that is independent of azimuth, the Thomas-BMT equation can be solved exactly (see GM2-doc-
25607). The precession frequency measured in the rotating frame
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At the magic momentum
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Note that here we define ωa = eBz
mc aµ, that is with respect to the vertical component of the magnetic field rather

than the magnitude of the field |B| =
√
B2
z +B2

l . The dependence of precession frequency in the rotating frame on
longitudinal field is shown in Figure 1.

The polarization (solution to Thomas-BMT) is given by

〈sx〉 =

(
cos2(ω′t/2)− (ω0 − ω)2 − Ω2
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https://gm2-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=25607
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FIG. 1: Fractional shift in ωa due to the ring average longitudinal field.

The projection of the polarization on the direction of motion

β̂ · s =

(
cos2(ω′t/2)− 1

ω′2
[(ω − ω0)2 − Ω2

l ] sin2(ω′t/2)

)
(2)

is shown in Figure 2.

LONGITUDINAL HARMONICS

In general the longitudinal field can be expanded in fourier harmonics. Then each harmonic is written as

Bn = bn cosnθ(cos θx̂− sin θŷ) +Bz ẑ

where n = 0 is a uniform longitudinal field, discussed above. As shown in GM2-doc-25607, the Thomas-BMT equation
can be derived from an effective Hamiltonian H representing the interaction energy of magnetic moment and magnetic
fields. The solution to Schrodinger’s equation

ı~
∂

∂t
ψ = Hψ

is equivalent to the solution of the Thomas-BMT equation. If the longitudinal field is uniform, H is independent
of time (in the rotating frame) and the Schrodinger equation can be solved exactly. If time dependent (nonuniform
longitudinal field), it can be solved using time dependent perturbation theory.

The frequency shift, to second order in the perturbation bn/Bz is (there is no first order contribution to the
precession frequency)

If n = 0,

λ(n = 0) = 2X2b20
1

η
,

If n > 0,

λ(n > 0) = X2b2n
−η

(nω)2 − η2

where

X =
e

mc
(aµ +

1

γ
− aµ

γ

γ + 1
β2).

https://gm2-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=25607
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FIG. 2: The projection of the polarization on the direction of motion (β̂ · s) with longitudinal magnetic field 10% of
the vertical field and longitudinal field zero is shown in each of the three plots. The top plot is computed in

simulation by integration of the equations of motion and the BMT equation. The middle plot is the analytic result
(Equation 2). The bottom plot is the simulation and analytic superimposed. The agreement is excellent.

and η = ω0 − ω = ωa
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For n = 0, the precession frequency in the rotating frame at the magic momentum is

ω′ = ωa + λ(n) = ω0 − ω + λ(n)

= ωa + 2
X2b2n(ω0 − ω)

((nω)2 − (ω0 − ω)2)
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a

b20
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2
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∆ω′
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=

1

2

b20
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z

γ2

consistent (to second order) with the exact result in Equation 1. (Note that for clarity we here use the definition

ωa ≡ eBz
mc aµ rather than ωa ≡ e|B|

mc aµ.) If n > 0 the precession frequency in the rotating frame at the magic momentum
is

ω′ = ωa − ω2
a

b2n
B2
z

γ2

4
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((nω)2 − ω2

a)
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(
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z

γ2

4
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a

(nω)2 − ω2
a

)
∆ω′
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= −1

4
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z
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(nω)2 − ω2
a

It is amusing to see how the contribution to the precession frequency depends on the harmonic number. To that
end consider the ratio of the n > 1 harmonics to the n = 0 harmonic

∆ω′(n > 0)

∆ω′(n = 0)
=

1

2

ω2
a

(nω)2 − ω2
a

b2n
b20
.

And if bn = b0

∆ω′(n > 0)

∆ω′(n = 0)
=

1

2

ω2
a

(nω)2 − ω2
a

Using ω′ = e
mcBzaµ and ω = e

mcγBz so that we write ω = ω′

γaµ

∆ω′(n > 0) =
1

2

−(γaµω)2

(nω)2 − ω2(γaµ)2
∆ω′(n = 0)

=
1

2

−(γaµω)2

(nω)2 − ω2(γaµ)2
∆ω′(n = 0)

=
1

2

−(γaµ)2

n2 − (γaµ)2
∆ω′(n = 0)

=
1

2

−γ2

n2(γ2 − 1)2 − γ2
∆ω′(n = 0) (3)

(Note that the tuneshift for n > 0 harmonics has the opposite sign of the n = 0 term.) The dependence of frequency
shift on longitudinal harmonic is shown in Figure 3. The points in the plot are from simulation (integration of the
Thomas-BMT equation).

SUMMARY

For a magic momentum muon circulating on its closed orbit, the shift in frequency due to a uniform (n = 0)
longitudinal field is

∆ω′

ωa
∼ 1

2

b20
B2
z

γ2
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FIG. 3: ∆ω(n) is the frequency shift for the nth harmonic. ∆ω(0) is the frequency shift for the n = 0 harmonic. The
ratio is shown as a function of n. bn = b0 for all n. The points are from integration of the Thomas-BMT equation

and the equations of motion. The open circles are computed for bl/Bz = 0.01 and the filled circles for bl/Bz = 0.005.
The line is Equation 3 where n is treated as a continuous variable.

and the frequency shift for n > 0

∆ω′
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∼ −1

4
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where

B =
∑
n

bn cosnθ(cos θx̂− sin θŷ) +Bz ẑ
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