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Goal:

Develop an analytic model of momentum acceptance in order to understand origin and dependencies 
of time-momentum correlation of captured particles
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Free betatron motion

With continuous quads

displacement

Then the angle of the trajectory:

Betatron phase
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Some Definitions
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Trajectory in terms of initial conditions and betatron phase

Trajectory of injected particle
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The betatron amplitude 
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The betatron amplitude on exit from the inflector
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inf . 10 mrad

x(s) = a
p

� cos(�(s)� �0) + ⌘�

� =
R0p
1� n

, ⌘ =
R0

1� n
, Qx =

p
1� n

�(s) = Qx
s

R0
, (! �FT = 2⇡Qx)

x0
inf (s) =

d

ds
xinf == �a

p
� sin(�� �0)�

0
= � ap

�
sin(�� �0)

(� = 0)

xinf = a
p

� cos�0 + ⌘�, x0
inf =

ap
�
sin�0

x(s) = a
p

�(cos(�� �0) + ⌘� = a
p

�[cos� cos�0 + sin� sin�0] + ⌘�

) x(s)� ⌘� = (xinf � ⌘�) cos�+ �x0
inf sin�

�(s) = �k

xk = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

x0
k = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

a =
1p
�
[(x� ⌘�)2 + (�x0

)
2
]
1/2

a0 =
1p
�
[(xinf � ⌘�)2 + (�x0

inf )
2
]
1/2

xk+ = xk

x0
k+ = x0

k + ✓k

xk+ = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

Invariant amplitude
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Kicker
At the kicker 

A Equations for presentation 13

x0
inf

(77� 9) mm < xinf < (77 + 9) mm

�10 mrad . x0
inf . 10 mrad

x(s) = a
p

� cos(�(s)� �0) + ⌘�

� =
R0p
1� n

, ⌘ =
R0

1� n
, Qx =

p
1� n

�(s) = Qx
s

R0
, (! �FT = 2⇡Qx)

x0
inf (s) =

d

ds
xinf == �a

p
� sin(�� �0)�

0
= � ap

�
sin(�� �0)

(� = 0)

xinf = a
p

� cos�0 + ⌘�, x0
inf =

ap
�
sin�0

x(s) = a
p

�(cos(�� �0) + ⌘� = a
p

�[cos� cos�0 + sin� sin�0] + ⌘�

) x(s)� ⌘� = (xinf � ⌘�) cos�+ �x0
inf sin�

�(s) = �k

xk = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

x0
k = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

a =
1p
�
[(x� ⌘�)2 + (�x0

)
2
]
1/2

a0 =
1p
�
[(xinf � ⌘�)2 + (�x0

inf )
2
]
1/2

xk+ = xk

x0
k+ = x0

k + ✓k

xk+ = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

Displacement and angle at the kicker

Immediately beyond the kick  (imagine an infinitesimally thin kicker)

A Equations for presentation 13
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(77� 9) mm < xinf < (77 + 9) mm

�10 mrad . x0
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� =
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1� n

, ⌘ =
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1� n
, Qx =

p
1� n

�(s) = Qx
s

R0
, (! �FT = 2⇡Qx)

x0
inf (s) =

d

ds
xinf == �a

p
� sin(�� �0)�

0
= � ap

�
sin(�� �0)

(� = 0)

xinf = a
p

� cos�0 + ⌘�, x0
inf =

ap
�
sin�0

x(s) = a
p

�(cos(�� �0) + ⌘� = a
p

�[cos� cos�0 + sin� sin�0] + ⌘�

) x(s)� ⌘� = (xinf � ⌘�) cos�+ �x0
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�(s) = �k

xk = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

x0
k = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

a =
1p
�
[(x� ⌘�)2 + (�x0

)
2
]
1/2

a0 =
1p
�
[(xinf � ⌘�)2 + (�x0

inf )
2
]
1/2

xk+ = xk

x0
k+ = x0

k + ✓k

xk+ = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

A Equations for presentation 13
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inf . 10 mrad

x(s) = a
p

� cos(�(s)� �0) + ⌘�

� =
R0p
1� n

, ⌘ =
R0

1� n
, Qx =

p
1� n

�(s) = Qx
s

R0
, (! �FT = 2⇡Qx)

x0
inf (s) =

d

ds
xinf == �a

p
� sin(�� �0)�

0
= � ap

�
sin(�� �0)

(� = 0)

xinf = a
p

� cos�0 + ⌘�, x0
inf =

ap
�
sin�0

x(s) = a
p

�(cos(�� �0) + ⌘� = a
p

�[cos� cos�0 + sin� sin�0] + ⌘�

) x(s)� ⌘� = (xinf � ⌘�) cos�+ �x0
inf sin�

�(s) = �k

xk = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

x0
k = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

a =
1p
�
[(x� ⌘�)2 + (�x0

)
2
]
1/2

a0 =
1p
�
[(xinf � ⌘�)2 + (�x0

inf )
2
]
1/2

xk+ = xk

x0
k+ = x0

k + ✓k

xk+ = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�A Equations for presentation 14

x0
k+ = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k + ✓k

ak+ =
1p
�
[(xk+ � ⌘�)2 + �2

(x0
k+)

2
]
1/2

a2k+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�

ak+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�1/2

Suppose

✓k = ⇡/2, x0
inf = 0

ak+ =
⇥
a20 + �✓2k + 2✓k (�(xinf � ⌘�))

⇤

✓k =
2(xinf � ⌘�)± [4(xinf � ⌘�)2 � 4�a20]

1/2

2�

✓k =
xinf � ⌘�

�

a(xinf , x
0
inf ,�k, ✓k, �)

x(s) =
p

�abk cos�� �0) + ⌘�

x(s)� ⌘� =

p
�aak cos(�� �0)

�
p
�aak < x� ⌘� <

p
�aak

�A < x� ⌘� < A

8
<

:

If ⌘� � r�a > �A

and ⌘� +
p
�a < +A

9
=

; particle is stored

�A+

p
�a < ⌘� < A�

p
�a

A Equations for presentation 13

x0
inf

(77� 9) mm < xinf < (77 + 9) mm

�10 mrad . x0
inf . 10 mrad

x(s) = a
p

� cos(�(s)� �0) + ⌘�

� =
R0p
1� n

, ⌘ =
R0

1� n
, Qx =

p
1� n

�(s) = Qx
s

R0
, (! �FT = 2⇡Qx)

x0
inf (s) =

d

ds
xinf == �a

p
� sin(�� �0)�

0
= � ap

�
sin(�� �0)

(� = 0)

xinf = a
p

� cos�0 + ⌘�, x0
inf =

ap
�
sin�0

x(s) = a
p

�(cos(�� �0) + ⌘� = a
p

�[cos� cos�0 + sin� sin�0] + ⌘�

) x(s)� ⌘� = (xinf � ⌘�) cos�+ �x0
inf sin�

�(s) = �k

xk = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

x0
k = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

a =
1p
�
[(x� ⌘�)2 + (�x0

)
2
]
1/2

a0 =
1p
�
[(xinf � ⌘�)2 + (�x0

inf )
2
]
1/2

xk+ = xk

x0
k+ = x0

k + ✓k

xk+ = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

A Equations for presentation 13

x0
inf

(77� 9) mm < xinf < (77 + 9) mm

�10 mrad . x0
inf . 10 mrad

x(s) = a
p

� cos(�(s)� �0) + ⌘�

� =
R0p
1� n

, ⌘ =
R0

1� n
, Qx =

p
1� n

�(s) = Qx
s

R0
, (! �FT = 2⇡Qx)

x0
inf (s) =

d

ds
xinf == �a

p
� sin(�� �0)�

0
= � ap

�
sin(�� �0)

(� = 0)

xinf = a
p

� cos�0 + ⌘�, x0
inf =

ap
�
sin�0

x(s) = a
p

�(cos(�� �0) + ⌘� = a
p

�[cos� cos�0 + sin� sin�0] + ⌘�

) x(s)� ⌘� = (xinf � ⌘�) cos�+ �x0
inf sin�

�(s) = �k

xk = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�

x0
k = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

a =
1p
�
[(x� ⌘�)2 + (�x0

)
2
]
1/2

a0 =
1p
�
[(xinf � ⌘�)2 + (�x0

inf )
2
]
1/2

xk+ = xk

x0
k+ = x0

k + ✓k

xk+ = (xinf � ⌘�) cos�k + �x0
inf sin�k + ⌘�
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Betatron amplitude beyond the kicker

A Equations for presentation 14

x0
k+ = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k + ✓k

ak+ =
1p
�
[(xk+ � ⌘�)2 + �2

(x0
k+)

2
]
1/2

a2k+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�

ak+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�1/2

Suppose

✓k = ⇡/2, x0
inf = 0

ak+ =
⇥
a20 + �✓2k + 2✓k (�(xinf � ⌘�))

⇤

✓k =
2(xinf � ⌘�)± [4(xinf � ⌘�)2 � 4�a20]

1/2

2�

✓k =
xinf � ⌘�

�

a(xinf , x
0
inf ,�k, ✓k, �)

x(s) =
p

�abk cos�� �0) + ⌘�

x(s)� ⌘� =

p
�aak cos(�� �0)

�
p
�aak < x� ⌘� <

p
�aak

�A < x� ⌘� < A

8
<

:

If ⌘� � r�a > �A

and ⌘� +
p
�a < +A

9
=

; particle is stored

�A+

p
�a < ⌘� < A�

p
�a

A Equations for presentation 14

x0
k+ = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k + ✓k

ak+ =
1p
�
[(xk+ � ⌘�)2 + �2

(x0
k+)

2
]
1/2

a2k+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�

ak+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�1/2

Suppose

✓k = ⇡/2, x0
inf = 0

ak+ =
⇥
a20 + �✓2k + 2✓k (�(xinf � ⌘�))

⇤

✓k =
2(xinf � ⌘�)± [4(xinf � ⌘�)2 � 4�a20]

1/2

2�

✓k =
xinf � ⌘�

�

a(xinf , x
0
inf ,�k, ✓k, �)

x(s) =
p

�abk cos�� �0) + ⌘�

x(s)� ⌘� =

p
�aak cos(�� �0)

�
p
�aak < x� ⌘� <

p
�aak

�A < x� ⌘� < A

8
<

:

If ⌘� � r�a > �A

and ⌘� +
p
�a < +A

9
=

; particle is stored

�A+

p
�a < ⌘� < A�

p
�a

The amplitude is a function of 

A Equations for presentation 14

x0
k+ = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k + ✓k

ak+ =
1p
�
[(xk+ � ⌘�)2 + �2

(x0
k+)

2
]
1/2

a2k+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�

ak+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�1/2

Suppose

✓k = ⇡/2, x0
inf = 0

ak+ =
⇥
a20 + �✓2k + 2✓k (�(xinf � ⌘�))

⇤

✓k =
2(xinf � ⌘�)± [4(xinf � ⌘�)2 � 4�a20]

1/2

2�

✓k =
xinf � ⌘�

�

a(xinf , x
0
inf ,�k, ✓k, �)

x(s) =
p

�abk cos�� �0) + ⌘�

x(s)� ⌘� =

p
�aak cos(�� �0)

�
p
�aak < x� ⌘� <

p
�aak

�A < x� ⌘� < A

8
<

:

If ⌘� � r�a > �A

and ⌘� +
p
�a < +A

9
=

; particle is stored

�A+

p
�a < ⌘� < A�

p
�a

The kick and the kick phase can be chosen such that

A Equations for presentation 14

x0
k+ = � 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k + ✓k

ak+ =
1p
�
[(xk+ � ⌘�)2 + �2

(x0
k+)

2
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1/2

a2k+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�

ak+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�1/2

Suppose

✓k = ⇡/2, x0
inf = 0

ak+ =
⇥
a20 + �✓2k + 2✓k (�(xinf � ⌘�))

⇤

✓k =
2(xinf � ⌘�)± [4(xinf � ⌘�)2 � 4�a20]

1/2

2�

✓k =
xinf � ⌘�

�

a(xinf , x
0
inf ,�k, ✓k, �)

ak+ = 0

x(s) =
p

�abk cos�� �0) + ⌘�

x(s)� ⌘� =

p
�aak cos(�� �0)

�
p
�aak < x� ⌘� <

p
�aak

�A < x� ⌘� < A

8
<

:

If ⌘� � r�a > �A

and ⌘� +
p
�a < +A

9
=

; particle is stored

�A+

p
�a < ⌘� < A�

p
�a

If                         and                        , the amplitude beyond the kicker is zero if

A Equations for presentation 14
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(x0
k+)

2
]
1/2

a2k+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
(xinf � ⌘�) sin�k + x0

inf cos�k

◆◆�

ak+ =


a20 + �

✓
✓2k + 2✓k

✓
� 1

�
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◆◆�1/2
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inf = 0

ak+ =
⇥
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⇤
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p
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�A < x� ⌘� < A

8
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:

If ⌘� � r�a > �A

and ⌘� +
p
�a < +A

9
=
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�A+

p
�a < ⌘� < A�

p
�a

If                        , the kick that minimizes amplitude is always greater than  
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Suppose
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=

; particle is stored
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Capture

Beyond the kicker 

The muon is captured if
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3

where

tan↵ =
(xinf � ⌘�)� �✓k sin�k

(x0
inf + ✓k cos�k)�k

and D =
⇥
((x0

inf + ✓k cos�k)�)
2
+ (xinf � ⌘� � ✓k� sin�k)

2
⇤1/2

Then

|x(�)| < A

! �A < �D + ⌘�, D + ⌘� < A

! �A� ⌘� < �D, and D < A� ⌘�. (7)

Equations 7 imply

D2 < (A± ⌘�)2

(x0
inf�)

2
+ (� 1

�
(xinf � ⌘�) + ✓k)�)

2 < A2
+ (⌘�)2 ± 2A⌘�

(x0
inf�)

2
+ (�xinf + ✓k�)

2
+ (⌘�)2 + 2(�xinf + ✓k�)⌘� < A2
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inf�)
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A± (xinf � ✓k�)
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! �1

2
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A� (xinf � ✓k�)�

(x0
inf�)2

A+ (xinf � ✓k�)

◆
< ⌘� <
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2
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A+ (xinf � ✓k�)�

(x0
inf�)2

A� (xinf � ✓k�)

◆
(8)

where x0
inf = x0

inf + ✓k cos�k and ✓k = ✓k sin�k. Note that in the weak focusing limit �k = ⇡/2 in which case

x0
inf = x0

inf and ✓k = ✓k. (In what follows we assume that x0
inf ! x0

inf and ✓k ! ✓k.) Equation 8 defines the range

of momenta that will be stored for a particular value of the kick angle ✓k.

The maximum momentum that can be stored is that momentum that minimizes the betatron amplitude (D). The

minimum of D with respect to momentum obtains when

dD

d�
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D
! ⌘� = xinf � ✓k� (9)
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Momentum acceptance

Rearrange to give the momentum acceptance in terms of initial conditions and kicks

(Here and                          )  
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If the injection angle is zero and the kick is chosen to zero          for the magic momentum,         

Then 
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(remember that amplitude         depends on momentum)
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FIG. 1: Momentum acceptance as a function of kicker field, assuming x0
inf = 0 (left) and x0

inf = 2.5 mrad (right).

All particle momenta between the dashed lines are stored. The solid line corresponds to the particle momentum

(radial o↵set) that is kicked onto its closed orbit. The other momenta in the slice oscillate about their respective

closed orbits with finite betatron amplitude. Note that the injection angle x0
inf reduces the momentum acceptance.
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1 magnetometer measurement) is the purple
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FIG. 3: The threshold kick angle for capture

is ✓k = (xinf �A)/� = 4.5 mrad ! 122 G.

The width of the range of captured momenta

(the length of the error bar) is A/⌘. The
midpoint of the range is h⌘�i = 1

2 (xinf � ✓k�).
(The injection angle x0

inf = 0.

of the momentum and the average of the square of the momentum in each time bin assuming gaussian distributed

momenta of the injected beam is shown in the right hand plot. Assuming the intensity distribution as shown in the

right hand plot, we determine that the equilibrium radial o↵set of the distribution h⌘�i = 12.15 mm with standard

deviation �r = 12.62mm. For reference, recall that for Run I, with Bkicker ⇠ 204G we measured average and width

of the momentum distribution to be h⌘�i ⇠ 6mm, and �r ⇠ 9mm respectively. We might increase the kicker field to

reduce the average displacement. But with that increased field we will capture more lower momenta muons and thus

increase the width.

Correlation

The momentum-time correlation is evident. The highest average momenta are at the head and tail of the stored

bunch where the kick is the weakest. The lowest average momenta corresponds to the peak of the kick. We might

anticipate that with increasing peak kicker field, the variation of the momentum from head to tail of the bunch will
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FIG. 3: The threshold kick angle for capture

is ✓k = (xinf �A)/� = 4.5 mrad ! 122 G.

The width of the range of captured momenta

(the length of the error bar) is A/⌘. The
midpoint of the range is h⌘�i = 1

2 (xinf � ✓k�).
(The injection angle x0

inf = 0.

of the momentum and the average of the square of the momentum in each time bin assuming gaussian distributed

momenta of the injected beam is shown in the right hand plot. Assuming the intensity distribution as shown in the

right hand plot, we determine that the equilibrium radial o↵set of the distribution h⌘�i = 12.15 mm with standard

deviation �r = 12.62mm. For reference, recall that for Run I, with Bkicker ⇠ 204G we measured average and width

of the momentum distribution to be h⌘�i ⇠ 6mm, and �r ⇠ 9mm respectively. We might increase the kicker field to

reduce the average displacement. But with that increased field we will capture more lower momenta muons and thus

increase the width.

Correlation

The momentum-time correlation is evident. The highest average momenta are at the head and tail of the stored

bunch where the kick is the weakest. The lowest average momenta corresponds to the peak of the kick. We might

anticipate that with increasing peak kicker field, the variation of the momentum from head to tail of the bunch will
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FIG. 1: Momentum acceptance as a function of kicker field, assuming x0
inf = 0 (left) and x0

inf = 2.5 mrad (right).

All particle momenta between the dashed lines are stored. The solid line corresponds to the particle momentum

(radial o↵set) that is kicked onto its closed orbit. The other momenta in the slice oscillate about their respective

closed orbits with finite betatron amplitude. Note that the injection angle x0
inf reduces the momentum acceptance.
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FIG. 3: The threshold kick angle for capture

is ✓k = (xinf �A)/� = 4.5 mrad ! 122 G.

The width of the range of captured momenta

(the length of the error bar) is A/⌘. The
midpoint of the range is h⌘�i = 1

2 (xinf � ✓k�).
(The injection angle x0

inf = 0.

of the momentum and the average of the square of the momentum in each time bin assuming gaussian distributed

momenta of the injected beam is shown in the right hand plot. Assuming the intensity distribution as shown in the

right hand plot, we determine that the equilibrium radial o↵set of the distribution h⌘�i = 12.15 mm with standard

deviation �r = 12.62mm. For reference, recall that for Run I, with Bkicker ⇠ 204G we measured average and width

of the momentum distribution to be h⌘�i ⇠ 6mm, and �r ⇠ 9mm respectively. We might increase the kicker field to

reduce the average displacement. But with that increased field we will capture more lower momenta muons and thus

increase the width.

Correlation

The momentum-time correlation is evident. The highest average momenta are at the head and tail of the stored

bunch where the kick is the weakest. The lowest average momenta corresponds to the peak of the kick. We might

anticipate that with increasing peak kicker field, the variation of the momentum from head to tail of the bunch will
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FIG. 5: Muons exit the center of the inflector aperture (xinf = 77mm) with zero angle. The kicker field and muon

intensity are shown at right. The peak kicker field is 204 G. The momentum bite (⌘�max � ⌘�min), and the centroid

of the bite captured in each time bin is shown at left. Note that in the case of x0
inf = 0 that the width of the

momentum bite is independent of kick. The centroid decreases with increasing kick. The average momentum and

the average of the square of the momenta in each time bin is shown at right. The average and standard deviation of

momenta in the captured distribution, is h⌘�i = 12.15 mm and �r = 12.62 mm.

also increase. The momenta at the head and tail will always be those picked up by the threshold kick, independent

of the kick at the peak. Meanwhile, the momenta at the peak will decrease as the peak kick increases.

Injection angle

As noted above, for trajectories that exit the inflector with nonzero angle, the momentum acceptance is reduced.

Figure 6(left) shows the momentum bite captured in each time bin. The momentum acceptance is reduced as compared

to the case with zero inflector angle, as is the length of the captured pulse and the momentum-time correlation.

Averaging over the injected distribution

In Figures 5 and 6 we show the momentum in the captured distribution based on Equations 10 and 12 for trajectories

that exit the inflector with a unique o↵set and angle and a gaussian momentum distribution. Together they give the

centroid and width of the momentum captured as a function of kicker strength. The distributions of the o↵set and

angle of the injected beam are shown in Figure 7. The distributions are roughly gaussian and characterized by

�d = 3.5mm and �✓ = 2.6 mrad respectively.
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Field index = 0
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FIG. 6: Muons exit the center of the inflector aperture (xinf = 77mm) with an angle x0
inf = 2.5 mrad. The kicker

field and muon intensity is shown at right. The peak kicker field is 204 G. The momentum bite (⌘�max � ⌘�min), and

the centroid of the bite captured in each time bin is shown at left. The centroid decreases with increasing kick. The

average momentum and the average of the square of the momenta in each time bin is shown at right. The average

and standard deviation of momenta in the captured distribution, is h⌘�i = 7.91 mm and �r = 9.16 mm.
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FIG. 7: Displacement(left) with respect to the center of the inflector aperture (xinf = 77mm) and angle of the

trajectory at the inflector exit as determined by simulation. Both distributions are roughly gaussian. The overlayed

Gaussian curves have widths �d ⇠ 3.5mm and �✓ ⇠ 2.6 mrad respectively.

How to average

The midpoint and width of the momentum bite at each kicker value depends on xinf , x0
inf . The range of allowed x0

inf
depends on the kick value. We can average over that range according to the appropriate distribution to get the angle

averaged momentum bite. Then when we average all the kick slices together, each is weighted by the pulse height,

the momentum distribution and the angle distribution. We will assume that xinf is fixed.

FIG. 8: Muons exit the center of the inflector aperture (xinf = 77mm), injection angle x0
inf = 0 mr and angular

spread �✓ = 2.5mr. Kicker field and muon intensity at right. Peak field is 204 G. The momentum bit and the

centroid of the bite captured are shown at left. The average and standard deviation of momenta in the captured

distribution is h⌘�i = 9.9mm and �r = 9.8 mm.

Angular distribution of injected 
particles from simulation

Finite injection angle decreases momentum acceptance (and correlation)
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Multiple kicks
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FIG. 11: The kicker pulse on the initial pass through the kicker (black curve) and T0 pulse (dashed curve). The

green, blue, yellow and purple curves are the kicker field on turns 1-4. Run 1-2 kicker pulse (left) and Run 3b-4

kicker pulse shape (right).

we see that the kicks on multiple can be included as e↵ective contributions to the injection angle and the total kick

amplitude. Using �n
k = 2⇡⌫( 14 + n), where ⌫ is the betatron tune, we write

�x0
inf =

X

n

✓nk cos(2⇡⌫[
1

4
+ n]) (18)
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n
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1

4
+ n]) (19)

✓k !
X

n

✓nk sin(2⇡⌫[
1

4
+ n]) (20)

Note that if ⌫ = 1 (field index = 0), that �x0
inf = 0 and the e↵ective kick ✓k =

P
n ✓

n
k is simply the sum of

contributions on each turn.

Extended kick

In our experiment, the kicker consists of 3 127cm long elements, whereas we have heretofore assumed that the kick

is applied at the singular location that is at the midpoint of the actual kickers. We can better approximate the e↵ect

of the extended kick by applying multiple singular kicks distributed over the length of kicker region. We might start

by applying 1/6 of the kick at the betatron phase ��(si) corresponding to the beginning and end of each of the 3

kicker elements at si, i = 1, ...6. With the continuous quad approximation, ��(si) = 2⇡⌫ si
2⇡R = ⌫ si

R . The Equations

18 and 19 become

�x0
inf =

NX

n

6X

i

✓nk
6

cos(2⇡⌫[
si
R

+ n])

x0
inf = x0

inf +�x0
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n
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i

✓nk
6

sin(2⇡⌫[
si
R

+ n])
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FIG. 11: The kicker pulse on the initial pass through the kicker (black curve) and T0 pulse (dashed curve). The

green, blue, yellow and purple curves are the kicker field on turns 1-4. Run 1-2 kicker pulse (left) and Run 3b-4

kicker pulse shape (right).

we see that the kicks on multiple can be included as e↵ective contributions to the injection angle and the total kick

amplitude. Using �n
k = 2⇡⌫( 14 + n), where ⌫ is the betatron tune, we write

�x0
inf =

X

n

✓nk cos(2⇡⌫[
1

4
+ n]) (18)

x0
inf = x0

inf +

X

n

✓nk cos(2⇡⌫[
1

4
+ n]) (19)

✓k =

X

n

✓nk sin(2⇡⌫[
1

4
+ n]) (20)

Note that if ⌫ = 1 (field index = 0), that �x0
inf = 0 and the e↵ective kick ✓k =

P
n ✓

n
k is simply the sum of

contributions on each turn.

Extended kick

In our experiment, the kicker consists of 3 127cm long elements, whereas we have heretofore assumed that the kick

is applied at the singular location that is at the midpoint of the actual kickers. We can better approximate the e↵ect

of the extended kick by applying multiple singular kicks distributed over the length of kicker region. We might start

by applying 1/6 of the kick at the betatron phase ��(si) corresponding to the beginning and end of each of the 3

kicker elements at si, i = 1, ...6. With the continuous quad approximation, ��(si) = 2⇡⌫ si
2⇡R = ⌫ si

R . The Equations

19 and 20 become

�x0
inf =

NX

n

6X

i

✓nk
6

cos(2⇡⌫[
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R

+ n])

x0
inf = x0

inf +�x0
inf
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✓nk
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sin(2⇡⌫[
si
R

+ n])

Inequality that defines momentum bite is generalized to include kicks on multiple turns with the replacement
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Assumes no collimation for first 9 turns

Extended kicker pulse alters momentum time correlation
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Distributed kick

The kicker extends over nearly 5 meters. 
Model the extended kick by replacing the single kick with 6 kicks each with 1/6 strength and located in the 
middle of the first and second half of each kicker  

Single kick
Distributed kicks

10

FIG. 11: The kicker pulse on the initial pass through the kicker (black curve) and T0 pulse (dashed curve). The

green, blue, yellow and purple curves are the kicker field on turns 1-4. Run 1-2 kicker pulse (left) and Run 3b-4

kicker pulse shape (right).

we see that the kicks on multiple can be included as e↵ective contributions to the injection angle and the total kick

amplitude. Using �n
k = 2⇡⌫( 14 + n), where ⌫ is the betatron tune, we write

�x0
inf =

X

n

✓nk cos(2⇡⌫[
1

4
+ n]) (18)

x0
inf = x0

inf +

X

n

✓nk cos(2⇡⌫[
1

4
+ n]) (19)

✓k =

X

n

✓nk sin(2⇡⌫[
1

4
+ n]) (20)

Note that if ⌫ = 1 (field index = 0), that �x0
inf = 0 and the e↵ective kick ✓k =

P
n ✓

n
k is simply the sum of

contributions on each turn.

Extended kick

In our experiment, the kicker consists of 3 127cm long elements, whereas we have heretofore assumed that the kick

is applied at the singular location that is at the midpoint of the actual kickers. We can better approximate the e↵ect

of the extended kick by applying multiple singular kicks distributed over the length of kicker region. We might start

by applying 1/6 of the kick at the betatron phase ��(si) corresponding to the beginning and end of each of the 3

kicker elements at si, i = 1, ...6. With the continuous quad approximation, ��(si) = 2⇡⌫ si
2⇡R = ⌫ si

R . The Equations

19 and 20 become

�x0
inf =

NX

n

6X

i

✓nk
6

cos(2⇡⌫[
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R

+ n])
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from
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exit
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where si are the locations of the kicks
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The model assumes
• Continuous quads
• Uniform kicker field and infinite aperture
• Continuous collimation 

=> Beginning after the last kick in the sum
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Approximations and limitations
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E989 
 
 
 
E821 

E821 B-field E989 B-field 

E989 plate geometry yields higher midplane B-field per unit current through plates 

Kicker field is not uniform across the aperture 

whereas the model assumes the kick is independent of displacement
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Capture e�ency

Equation 20 gives the average momentum in each kicker slice. Equation 21 gives hx02i in each slice. Assuming no

correlation between momentum, injection angle and injection time, the fraction of the injected beam captured in that

kicker slice is
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APPENDIX II

A. Equations for presentation

xinfinflector

kicker

Magic momentum muon enters kicker #1 
displaced ~ 22 mm from magnet axis
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Capture e�ency

Equation 20 gives the average momentum in each kicker slice. Equation 21 gives hx02i in each slice. Assuming no

correlation between momentum, injection angle and injection time, the fraction of the injected beam captured in that

kicker slice is

✏ =

Z �max
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⇢�(�)d�

Z x0
max

x0
min

⇢0x(x
0
)dx0

Z ti+1

ti

⇢pulse(t)dt

APPENDIX II

A. Equations for presentation

xinfinflector

kicker

Muons with high momentum and/or angle will 
miss part or all of kicker #1. 

The kickers have a finite aperture
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Kicker aperture

Because of the finite kicker aperture,
the model will overestimate acceptance of high momentum muons.
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Conclusions:

• Width of accepted momentum bite is nearly independent of kick (as long as the kick is above 
threshold)

• Centroid of the accepted momentum bite decreases with increasing kick
• Accepted momentum bite narrows with increasing injection angle
• The kicker pulse extends over multiple turns. The effect of the multiple kicks is to ‘flatten’ the 

pulse and reduce the dependence of momentum on time.  So it is important to get the details 
right in simulations

• Finite kicker aperture reduces acceptance of high momentum particles.
• Details of collimation are important as they determine impact of secondary ...   kicks
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FIG. 4: Momentum distribution of all muons exiting the inflector (left). And those for which there are stable closed

orbits in the storage ring (right). The shape of the distribution in the storable range corresponds (roughly) to a

gaussian with � = 0.8%.

FIG. 5: Muons exit the center of the inflector aperture (xinf = 77mm) with zero angle. The kicker field and muon

intensity are shown at right. The peak kicker field is 204 G. The momentum bite (⌘�max � ⌘�min), and the centroid

of the bite captured in each time bin is shown at left. Note that in the case of x0
inf = 0 that the width of the

momentum bite is independent of kick. The centroid decreases with increasing kick. The average momentum and

the average of the square of the momenta in each time bin is shown at right. The average and standard deviation of

momenta in the captured distribution, is h⌘�i = 12.15 mm and �r = 12.62 mm.

also increase. The momenta at the head and tail will always be those picked up by the threshold kick, independent

of the kick at the peak. Meanwhile, the momenta at the peak will decrease as the peak kick increases.

Injection angle

As noted above, for trajectories that exit the inflector with nonzero angle, the momentum acceptance is reduced.

Figure 6(left) shows the momentum bite captured in each time bin. The momentum acceptance is reduced as compared

to the case with zero inflector angle, as is the length of the captured pulse and the momentum-time correlation.

Averaging over the injected distribution

In Figures 5 and 6 we show the momentum in the captured distribution based on Equations 10 and 12 for trajectories

that exit the inflector with a unique o↵set and angle and a gaussian momentum distribution. Together they give the

centroid and width of the momentum captured as a function of kicker strength. The distributions of the o↵set and

angle of the injected beam are shown in Figure 7. The distributions are roughly gaussian and characterized by

�d = 3.5mm and �✓ = 2.6 mrad respectively.
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orbits in the storage ring (right). The shape of the distribution in the storable range corresponds (roughly) to a

gaussian with � = 0.8%.

FIG. 5: Muons exit the center of the inflector aperture (xinf = 77mm) with zero angle. The kicker field and muon

intensity are shown at right. The peak kicker field is 204 G. The momentum bite (⌘�max � ⌘�min), and the centroid

of the bite captured in each time bin is shown at left. Note that in the case of x0
inf = 0 that the width of the

momentum bite is independent of kick. The centroid decreases with increasing kick. The average momentum and

the average of the square of the momenta in each time bin is shown at right. The average and standard deviation of

momenta in the captured distribution, is h⌘�i = 12.15 mm and �r = 12.62 mm.

also increase. The momenta at the head and tail will always be those picked up by the threshold kick, independent

of the kick at the peak. Meanwhile, the momenta at the peak will decrease as the peak kick increases.

Injection angle

As noted above, for trajectories that exit the inflector with nonzero angle, the momentum acceptance is reduced.

Figure 6(left) shows the momentum bite captured in each time bin. The momentum acceptance is reduced as compared

to the case with zero inflector angle, as is the length of the captured pulse and the momentum-time correlation.

Averaging over the injected distribution

In Figures 5 and 6 we show the momentum in the captured distribution based on Equations 10 and 12 for trajectories

that exit the inflector with a unique o↵set and angle and a gaussian momentum distribution. Together they give the

centroid and width of the momentum captured as a function of kicker strength. The distributions of the o↵set and

angle of the injected beam are shown in Figure 7. The distributions are roughly gaussian and characterized by

�d = 3.5mm and �✓ = 2.6 mrad respectively.
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